Photorhabdus

Last updated

Photorhabdus
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Photorhabdus

(Boemare et al. 1993) emend. Fischer-Le Saux et al. 1999
Species

Photorhabdus is a genus of bioluminescent, gram-negative bacilli which lives symbiotically within entomopathogenic nematodes, hence the name photo (which means light producing) and rhabdus (rod shape). [1] Photorhabdus is known to be pathogenic to a wide range of insects and has been used as biopesticide in agriculture.

Contents

Life cycle

Photorhabdus species facilitate the reproduction of entomopathogenic nematodes by infecting and killing susceptible insect larvae. [2] Entomopathogenic nematodes are normally found in soil. Nematodes infect larval hosts by piercing the larval cuticle. When the nematode enters an insect larvae, Photorhabdus species are released by the nematodes and will produce a range of toxins, killing the host within 48 hours. Photorhabdus species feed on the cadaver of the insect and the process converts the cadaver into a nutrient source for the nematode. Mature nematodes leave the depleted body of the insect and search for new hosts to infect.

Entomopathogenic nematodes emerging from a wax moth cadaver Entomopathogenic nematode (Heterorhabditis bacteriophora ) Poinar, 1975.jpg
Entomopathogenic nematodes emerging from a wax moth cadaver

During stationary phase growth inside insect larvae, Photorhabdus species synthesize a molecule called 3,5-Dihydroxy-4-isopropyl-trans-stilbene (ST). It is proposed that ST acts as an antibiotic and protects Photorhabdus species from competition from other microorganisms, and also helps circumvent the insect's immune system. [1]

3,5-Dihydroxy-4-isopropyl-trans-stilbene(ST) Benvitimod.svg
3,5-Dihydroxy-4-isopropyl-trans-stilbene(ST)

Photorhabdus species are essential endosymbionts for Heterorhabditis nematodes.

Genome sequence

The complete genome of Photorhabdus luminescens was sequenced in 2003. The DNA sequence of Photorhabdus contains a number of toxin-encoding genes that are essential for killing the insect after infection. This includes genes encoding toxins that kill Manduca sexta , the tobacco hornworm, gene mcf that causes apoptosis in insect hemocytes and midgut epithelium, and genes that intervene in the development of insect host. [3]

Another important sequence identified is the gene encoding polyketide and nonribosomal peptide syntheses which produce antibiotics to protect against microbial competitors. [3]

It is proposed that Photorhabdus species acquired the toxin genes by horizontal gene transfer during evolution.

In agriculture

The efficiency of insect-killing nature of Photorhabdus species and its potential use as biopesticide have been studied. Use of Photorhabdus species alone as biopesticide, independent of its nematode symbiont, against the cabbage white butterfly, Pieris brassicae , mango mealy bug, Drosicha mangiferae and the pupae of the diamond back moth, Plutella xylostella has been demonstrated successful. [4] It also has the pathogenic potential to kill the Asian corn borer, a pest of maize in east Asia, in 48 hours.

As disease-causing agent

Three species of Photohabdus have been found, which are Photorhabdus luminescens , Photorhabdus temperata and Photorhabdus asymbiotica. P. asymbiotica has been shown to be infectious to human, but the cases are mostly non-fatal and are restricted to the US state of Texas and the Gold Coast of Australia. [1]

The first case of human infection was reported by the Centers for Disease Control in the United States in 1989. [5]

In 1999, a study reported another four cases of Photorhabdus luminescens infection in south eastern Australia, one in 1994 and three in 1998. [6]

Related Research Articles

<span class="mw-page-title-main">Bacteriophage</span> Virus that infects and replicates within bacteria

A bacteriophage, also known informally as a phage, is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν, meaning "to devour". Bacteriophages are composed of proteins that encapsulate a DNA or RNA genome, and may have structures that are either simple or elaborate. Their genomes may encode as few as four genes and as many as hundreds of genes. Phages replicate within the bacterium following the injection of their genome into its cytoplasm.

<i>Campylobacter jejuni</i> Species of bacterium

Campylobacter jejuni is a species of pathogenic bacteria, one of the most common causes of food poisoning in Europe and in the US. The vast majority of cases occur as isolated events, not as part of recognized outbreaks. Active surveillance through the Foodborne Diseases Active Surveillance Network (FoodNet) indicates that about 20 cases are diagnosed each year for each 100,000 people in the US, while many more cases are undiagnosed or unreported; the CDC estimates a total of 1.5 million infections every year. The European Food Safety Authority reported 246,571 cases in 2018, and estimated approximately nine million cases of human campylobacteriosis per year in the European Union.

<i>Wolbachia</i> Genus of bacteria in the Alphaproteobacteria class

Wolbachia is a genus of intracellular bacteria that infects mainly arthropod species, including a high proportion of insects, and also some nematodes. It is one of the most common parasitic microbes, and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex, and in some cases have evolved to be mutualistic rather than parasitic. Some host species cannot reproduce, or even survive, without Wolbachia colonisation. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70% of all insect species are estimated to be potential hosts.

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, gram-negative, aerobic–facultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes.

<span class="mw-page-title-main">Stilbenoid</span> Class of chemical compounds

Stilbenoids are hydroxylated derivatives of stilbene. They have a C6–C2–C6 structure. In biochemical terms, they belong to the family of phenylpropanoids and share most of their biosynthesis pathway with chalcones. Most stilbenoids are produced by plants, and the only known exception is the antihelminthic and antimicrobial stilbenoid, 2-isopropyl-5-[(E)-2-phenylvinyl]benzene-1,3-diol, biosynthesized by the Gram-negative bacterium Photorhabdus luminescens.

<i>Photorhabdus luminescens</i> Species of bacterium

Photorhabdus luminescens is a Gammaproteobacterium of the family Morganellaceae, and is a lethal pathogen of insects.

<i>Bacillus anthracis</i> Species of bacterium

Bacillus anthracis is a gram-positive and rod-shaped bacterium that causes anthrax, a deadly disease to livestock and, occasionally, to humans. It is the only permanent (obligate) pathogen within the genus Bacillus. Its infection is a type of zoonosis, as it is transmitted from animals to humans. It was discovered by a German physician Robert Koch in 1876, and became the first bacterium to be experimentally shown as a pathogen. The discovery was also the first scientific evidence for the germ theory of diseases.

<i>Staphylococcus</i> Genus of Gram-positive bacteria

Staphylococcus is a genus of Gram-positive bacteria in the family Staphylococcaceae from the order Bacillales. Under the microscope, they appear spherical (cocci), and form in grape-like clusters. Staphylococcus species are facultative anaerobic organisms.

Moraxella osloensis is a Gram-negative oxidase-positive, aerobic bacterium within the family Moraxellaceae in the gamma subdivision of the purple bacteria.

Xenorhabdus is a genus of motile, gram-negative bacteria from the family of the Morganellaceae. All the species of the genus are only known to live in symbiosis with soil entomopathogenic nematodes from the genus Steinernema.

<i>Purpureocillium lilacinum</i> Species of fungus

Purpureocillium lilacinum is a species of filamentous fungus in the family Ophiocordycipitaceae. It has been isolated from a wide range of habitats, including cultivated and uncultivated soils, forests, grassland, deserts, estuarine sediments and sewage sludge, and insects. It has also been found in nematode eggs, and occasionally from females of root-knot and cyst nematodes. In addition, it has frequently been detected in the rhizosphere of many crops. The species can grow at a wide range of temperatures – from 8 to 38 °C for a few isolates, with optimal growth in the range 26 to 30 °C. It also has a wide pH tolerance and can grow on a variety of substrates. P. lilacinum has shown promising results for use as a biocontrol agent to control the growth of destructive root-knot nematodes.

<i>Staphylococcus hyicus</i> Species of bacterium

Staphylococcus hyicus is a Gram-positive, facultatively anaerobic bacterium in the genus Staphylococcus. It consists of clustered cocci and forms white circular colonies when grown on blood agar. S. hyicus is a known animal pathogen. It causes disease in poultry, cattle, horses, and pigs. Most notably, it is the agent that causes porcine exudative epidermitis, also known as greasy pig disease, in piglets. S. hyicus is generally considered to not be zoonotic, however it has been shown to be able to cause bacteremia and sepsis in humans.

Arsenophonus nasoniae is a species of bacterium which was previously isolated from Nasonia vitripennis, a species of parasitoid wasp. These wasps are generalists which afflict the larvae of parasitic carrion flies such as blowflies, houseflies and flesh flies. A. nasoniae belongs to the phylum Pseudomonadota and family Morganellaceae.The genus Arsenophonus, has a close relationship to the Proteus (bacterium) rather than to that of Salmonella and Escherichia. The genus is composed of gammaproteobacterial, secondary-endosymbionts which are gram-negative. Cells are non-flagellated, non-motile, non-spore forming and form long to highly filamentous rods. Cellular division is exhibited through septation. The name 'Arsenophonus nasoniae gen. nov., sp. nov.' was therefore proposed for the discovered bacterium due to its characteristics and its microbial interaction with N. vitripennis. The type strain of A. nasoniae is Strain SKI4.

Photorhabdus temperata is a species of bacteria. It has been divided into 6 subspecies. It is pathogenic to certain insects.

<i>Heterorhabditis megidis</i> Species of roundworm

Heterorhabditis megidis is a species of nematodes in the genus Heterorhabditis. All species of this genus are obligate parasites of insects, and some are used as biological control agents for the control of pest insects.

<i>Steinernema carpocapsae</i> Species of roundworm

Steinernema carpocapsae is an entomopathogenic nematode and a member of the family Steinernematidae. It is a parasitic roundworm that has evolved an insect-killing symbiosis with bacteria, and kills its hosts within a few days of infection. This parasite releases its bacterial symbiont along with a variety of proteins into the host after infection, and together the bacteria and nematode overcome host immunity and kill the host quickly. As a consequence, S. carpocapsae has been widely adapted for use as a biological control agent in agriculture and pest control. S. carpocapsae is considered a generalist parasite and has been effectively used to control a variety of insects including: Webworms, cutworms, armyworms, girdlers, some weevils, and wood-borers. This species is an example of an "ambush" forager, standing on its tail in an upright position near the soil surface and attaching to passing hosts, even capable of jumping. As an ambush forager, S. carpocapsae is thought to be especially effective when applied against highly mobile surface-adapted insects. S. carpocapsae can sense carbon dioxide production, making the spiracles a key portal of entry into its insect hosts. It is most effective at temperatures ranging from 22–28 °C (72–82 °F).

<i>Steinernema</i> Genus of roundworms

Steinernema is a genus of nematodes in the family of Steinernematidae. The genus Steinernema is named after the nematologist Gotthold Steiner.

<i>Drosophila quinaria</i> species group Species group of the subgenus Drosophila

The Drosophila quinaria species group is a speciose lineage of mushroom-feeding flies studied for their specialist ecology, their parasites, population genetics, and the evolution of immune systems. Quinaria species are part of the Drosophila subgenus.

<span class="mw-page-title-main">Morganellaceae</span> Family of bacteria

The Morganellaceae are a family of Gram-negative bacteria that include some important human pathogens formerly classified as Enterobacteriaceae. This family is a member of the order Enterobacterales in the class Gammaproteobacteria of the phylum Pseudomonadota. Genera in this family include the type genus Morganella, along with Arsenophonus, Cosenzaea, Moellerella, Photorhabdus, Proteus, Providencia and Xenorhabdus.

<span class="mw-page-title-main">Tapinarof</span> Chemical compound

Tapinarof, also known as benvitimod and sold under the brand name Vtama, is a medication used for the treatment of plaque psoriasis. The medication is applied to the skin. Besides its use in medicine, tapinarof is a naturally occurring compound found in bacterial symbionts of nematodes which has antibiotic properties.

References

  1. 1 2 3 David J. Clarke (2008). "Photorhabdus: shedding light on symbioses". Microbiology Today . 35 (4): 180–183.
  2. Gerrard, John G (2003). "Photorhabdus Species: Bioluminescent Bacteria as Human Pathogens?". Emerging Infectious Diseases . 9 (2). doi:10.3201/eid0902.020222. PMC   2902266 . PMID   12603999.
  3. 1 2 Williamson, Valerie M.; Kaya, Harry K (2003). "Sequence of a symbiont". Nature Biotechnology . 21 (11): 1924–1925. doi:10.1038/nbt1103-1294. PMID   14595358.
  4. Mohan Sharad; Sabir Naved (2005). "Biosafety concerns on the use of Photorhabdus luminescens as biopesticide : experimental evidence of mortality in egg parasitoid Trichogramma spp" (PDF). Current Science . 89: 1268–1272.
  5. Farmer JJ, Jorgensen JH, Grimont PA, Ackhurst RJ, Poinar GO, Ageron E (1989). "Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens". Journal of Clinical Microbiology . 27: 1594–600. PMC   267621 . PMID   2768446.
  6. Peel, M.M; et al. (1999). "Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia". Journal of Clinical Microbiology . 37: 3647–3653. PMC   85716 . PMID   10523568.

"Photorhabdus". National Center for Biotechnology Information (NCBI).