Spindle pole body

Last updated

The spindle pole body (SPB) is the microtubule organizing center in yeast cells, functionally equivalent to the centrosome. Unlike the centrosome the SPB does not contain centrioles. The SPB organises the microtubule cytoskeleton which plays many roles in the cell. It is important for organising the spindle and thus in cell division.

Contents

SPB structure in Saccharomyces cerevisiae

The molecular mass of a diploid SPB, including microtubules and microtubule associated proteins, is estimated to be 1–1.5 GDa whereas a core SPB is 0.3–0.5 GDa. The SPB is a cylindrical multilayer organelle. These layers are: an outer plaque (OP), which connects to the cytoplasmic microtubules (cMT); a first intermediate layer (IL1) and an electrondense second intermediate layer (IL2); an electrondense central plaque (CP), which is at the level of the nuclear envelope and is connected to it by hook-like structures, an ill-defined inner plaque (IP); and a layer of the inner plaque that contains capped nuclear microtubules (nMT) ends. The central plaque and IL2 appeared as distinct but highly ordered layers. The other layers (MT ends, IP, IL1, and OP) do not show ordered packing. The location of the inner and outer plaques in relation to the nuclear membranes is maintained during the entire cell cycle. One side of the central plaque is associated with an electron-dense region of the nuclear envelope termed the half bridge. The SPB has constant height size (the inner plaque to outer plaque distance) for about 150 nm, but its diameter changes during cell cycle, e.g. in haploid cells, the SPB grows in diameter from 80 nm in G1 to 110 nm in mitosis. The SPB diameter depends on DNA content. A larger SPB diameter increases microtubule nucleation capacity of the SPB, which is important for chromosome segregation.

All SPB proteins can be divided into three groups: core components, half-bridge components and components needed for connection with NE. There is no known motif or structure, that makes a protein belong to SPB, but analysis of known SPB proteins and their genes shows several common features. The core contains mostly proteins with coiled-coil motifs, that allow to form dimers, either with themselves or with others proteins and maintain regular structures (e.g. CP, IL2). Many SPB genes contain MluI cell cycle boxes in their promoter elements that lead to G1 specific gene transcription. The primary sequence of SPB components should contain consensus phosphorylation sites for mitotic kinases, because the SPB is highly phosphorylated.

The main central plaque component is coiled-coil protein Spc42p (for spindle pole body component) also found to be a part of satellite, that forms a core crystal of SPB. The Spc42p protein is involved in initiation of SPB assembly and its duplication. [1] The Spc42p associates with Spc110p and Spc29p, two other essential coiled-coil proteins that localize to the nuclear face of the SPB. Spc110 localizes to the central plaque and is thought to bind to Spc29p and calmodulin (Cmd1p). The role of Spc110p is a spacer molecule between the central and inner plaque and γ-tubilin complex binding protein. The essential function of calmodulin is at the SPB where it has been proposed to regulate binding of Spc110p to Spc29p. Spc29 forms in the central plaque a repeating structure. Spc98p and Spc97p are two similar yeast γ –tubulin (Tub4p) binding proteins required for microtubule nucleation. Spc98p, Spc97p and Tub4p are found at the inner and outer plaques of SPB and are involved in microtubules organization. Spc42 faces the cytoplasm and binds to coiled-coil Cnm67p (chaotic nuclear migration). Cnm67p forms dimers and functions as a spacer between IL2 and IL1. Cnm67 binds to the outer plaque protein Nud1p, a SPB protein required for exit from mitosis. Another coiled-coil protein, Spc72p, is also found in the outer plaque. Spc72p associates with Nud1p and to components of the γ-tubulin complex.

The half-bridge is the site of new SPB assembly, and it also plays a role in cytoplasmic microtubule nucleation during G1 and karyogamy. Both sides of the half-bridge are not equivalent. Two single-pass membrane proteins, Kar1p and Mps3p, localize to the half-bridge and are required to form and/or maintain the structure. Both proteins bind to Cdc31p, the yeast centrin homolog, which also localizes to the half-bridge and is required for half-bridge integrity. An additional half-bridge component, Sfi1p, shows ability to bind to Cdc31p through multiple conserved Cdc31-binding sites throughout its length. Kar1p is also involved in connecting the half-bridge to the core SPB via its interaction with Bbp1p. In addition, Kar1p plays a role in reorganization of the SPB during G1.

SPB duplication pathway in Saccharomyces cerevisiae

Duplication of the SPB once, and only once, during each cell cycle is essential for formation of a bipolar mitotic spindle and accurate chromosome segregation. SPB duplication in S. cerevisiae can be divided into several steps. The first step occurs early in G1, when satellite material forms on cytoplasmic tip of half-bridge. During the second step half-bridge elongates and completes its nuclear and cytoplasmic faces fusion. In the same time satellite forms duplication plaque, a layered structure that is similar to the cytoplasmic half of a mature SPB. The last step of SPB duplication is insertion of the duplication plaque into the nuclear envelope and assembly of nuclear SPB components. At the end of G1 yeast cells contain two duplicated side-by-side SPBs connected by a complete bridge. Then bridge separates and SPB nucleates bipolar spindle. SPB continues to grow until mitosis, so protein components are able to incorporate into both SPBs throughout the cell cycle.

Related Research Articles

<span class="mw-page-title-main">Centrosome</span> Cell organelle in animal cell helping in cell division

In cell biology, the centrosome is an organelle that serves as the main microtubule organizing center (MTOC) of the animal cell, as well as a regulator of cell-cycle progression. The centrosome provides structure for the cell. The centrosome is thought to have evolved only in the metazoan lineage of eukaryotic cells. Fungi and plants lack centrosomes and therefore use other structures to organize their microtubules. Although the centrosome has a key role in efficient mitosis in animal cells, it is not essential in certain fly and flatworm species.

<span class="mw-page-title-main">Cytokinesis</span> Part of the cell division process

Cytokinesis is the part of the cell division process during which the cytoplasm of a single eukaryotic cell divides into two daughter cells. Cytoplasmic division begins during or after the late stages of nuclear division in mitosis and meiosis. During cytokinesis the spindle apparatus partitions and transports duplicated chromatids into the cytoplasm of the separating daughter cells. It thereby ensures that chromosome number and complement are maintained from one generation to the next and that, except in special cases, the daughter cells will be functional copies of the parent cell. After the completion of the telophase and cytokinesis, each daughter cell enters the interphase of the cell cycle.

<span class="mw-page-title-main">Spindle apparatus</span> Feature of biological cell structure

In cell biology, the spindle apparatus refers to the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells. It is referred to as the mitotic spindle during mitosis, a process that produces genetically identical daughter cells, or the meiotic spindle during meiosis, a process that produces gametes with half the number of chromosomes of the parent cell.

<span class="mw-page-title-main">Telophase</span> Final stage of a cell division for eukaryotic cells both in mitosis and meiosis

Telophase is the final stage in both meiosis and mitosis in a eukaryotic cell. During telophase, the effects of prophase and prometaphase are reversed. As chromosomes reach the cell poles, a nuclear envelope is re-assembled around each set of chromatids, the nucleoli reappear, and chromosomes begin to decondense back into the expanded chromatin that is present during interphase. The mitotic spindle is disassembled and remaining spindle microtubules are depolymerized. Telophase accounts for approximately 2% of the cell cycle's duration.

The microtubule-organizing center (MTOC) is a structure found in eukaryotic cells from which microtubules emerge. MTOCs have two main functions: the organization of eukaryotic flagella and cilia and the organization of the mitotic and meiotic spindle apparatus, which separate the chromosomes during cell division. The MTOC is a major site of microtubule nucleation and can be visualized in cells by immunohistochemical detection of γ-tubulin. The morphological characteristics of MTOCs vary between the different phyla and kingdoms. In animals, the two most important types of MTOCs are 1) the basal bodies associated with cilia and flagella and 2) the centrosome associated with spindle formation.

<span class="mw-page-title-main">Karyogamy</span> Fusion of the nuclei of two haploid eukaryotic cells

Karyogamy is the final step in the process of fusing together two haploid eukaryotic cells, and refers specifically to the fusion of the two nuclei. Before karyogamy, each haploid cell has one complete copy of the organism's genome. In order for karyogamy to occur, the cell membrane and cytoplasm of each cell must fuse with the other in a process known as plasmogamy. Once within the joined cell membrane, the nuclei are referred to as pronuclei. Once the cell membranes, cytoplasm, and pronuclei fuse, the resulting single cell is diploid, containing two copies of the genome. This diploid cell, called a zygote or zygospore can then enter meiosis, or continue to divide by mitosis. Mammalian fertilization uses a comparable process to combine haploid sperm and egg cells (gametes) to create a diploid fertilized egg.

<span class="mw-page-title-main">Dynein</span> Class of enzymes

Dyneins are a family of cytoskeletal motor proteins that move along microtubules in cells. They convert the chemical energy stored in ATP to mechanical work. Dynein transports various cellular cargos, provides forces and displacements important in mitosis, and drives the beat of eukaryotic cilia and flagella. All of these functions rely on dynein's ability to move towards the minus-end of the microtubules, known as retrograde transport; thus, they are called "minus-end directed motors". In contrast, most kinesin motor proteins move toward the microtubules' plus-end, in what is called anterograde transport.

<span class="mw-page-title-main">Spindle checkpoint</span> Cell cycle checkpoint

The spindle checkpoint, also known as the metaphase-to-anaphase transition, the spindle assembly checkpoint (SAC), the metaphase checkpoint, or the mitotic checkpoint, is a cell cycle checkpoint during mitosis or meiosis that prevents the separation of the duplicated chromosomes (anaphase) until each chromosome is properly attached to the spindle. To achieve proper segregation, the two kinetochores on the sister chromatids must be attached to opposite spindle poles. Only this pattern of attachment will ensure that each daughter cell receives one copy of the chromosome. The defining biochemical feature of this checkpoint is the stimulation of the anaphase-promoting complex by M-phase cyclin-CDK complexes, which in turn causes the proteolytic destruction of cyclins and proteins that hold the sister chromatids together.

<span class="mw-page-title-main">Kinetochore</span> Protein complex that allows microtubules to attach to chromosomes during cell division

A kinetochore is a disc-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers attach during cell division to pull sister chromatids apart. The kinetochore assembles on the centromere and links the chromosome to microtubule polymers from the mitotic spindle during mitosis and meiosis. The term kinetochore was first used in a footnote in a 1934 Cytology book by Lester W. Sharp and commonly accepted in 1936. Sharp's footnote reads: "The convenient term kinetochore has been suggested to the author by J. A. Moore", likely referring to John Alexander Moore who had joined Columbia University as a freshman in 1932.

<span class="mw-page-title-main">Aurora kinase A</span> Protein-coding gene in the species Homo sapiens

Aurora kinase A also known as serine/threonine-protein kinase 6 is an enzyme that in humans is encoded by the AURKA gene.

In cell biology, microtubule nucleation is the event that initiates de novo formation of microtubules (MTs). These filaments of the cytoskeleton typically form through polymerization of α- and β-tubulin dimers, the basic building blocks of the microtubule, which initially interact to nucleate a seed from which the filament elongates.

<span class="mw-page-title-main">Nuclear envelope</span> Nuclear membrane surrounding the nucleus in eukaryotic cells

The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material.

<span class="mw-page-title-main">Dynactin</span>

Dynactin is a 23 subunit protein complex that acts as a co-factor for the microtubule motor cytoplasmic dynein-1. It is built around a short filament of actin related protein-1 (Arp1).

<span class="mw-page-title-main">NDC80</span>

Kinetochore protein NDC80 homolog is a protein that in humans is encoded by the NDC80 gene.

<span class="mw-page-title-main">TPX2</span>

Targeting protein for Xklp2 is a protein that in humans is encoded by the TPX2 gene. It is one of the many spindle assembly factors that play a key role in inducing microtubule assembly and growth during M phase.

<span class="mw-page-title-main">TUBGCP3</span>

Gamma-tubulin complex component 3 is a protein that in humans is encoded by the TUBGCP3 gene. It is part of the gamma tubulin complex, which required for microtubule nucleation at the centrosome.

<span class="mw-page-title-main">Mad1</span>

Mad1 is a non-essential protein which in yeast has a function in the spindle assembly checkpoint (SAC). This checkpoint monitors chromosome attachment to spindle microtubules and prevents cells from starting anaphase until the spindle is built up. The name Mad refers to the observation that mutant cells are mitotic arrest deficient (MAD) during microtubule depolymerization. Mad1 recruits the anaphase inhibitor Mad2 to unattached kinetochores and is essential for Mad2-Cdc20 complex formation in vivo but not in vitro. In vivo, Mad1 acts as a competitive inhibitor of the Mad2-Cdc20 complex. Mad1 is phosphorylated by Mps1 which then leads together with other activities to the formation of the mitotic checkpoint complex (MCC). Thereby it inhibits the activity of the anaphase-promoting complex/cyclosome (APC/C). Homologues of Mad1 are conserved in eukaryotes from yeast to mammals.

The XMAP215/Dis1 family is a highly conserved group of microtubule-associated proteins (MAPs) in eukaryotic organisms. These proteins are unique MAPs because they primarily interact with the growing-end (plus-end) of microtubules. This special property classifies this protein family as plus-end tracking proteins (+TIPs).

<span class="mw-page-title-main">SFI1</span>

Sfi1 homolog, spindle assembly associated (yeast) is a protein that in humans is encoded by the SFI1 gene. It localizes to the centriole, and its S. pombe ortholog has been shown to be involved in spindle pole body duplication. SFI1 forms a complex with centrin 2.

<span class="mw-page-title-main">Microtubule plus-end tracking protein</span>

Microtubule plus-end/positive-end tracking proteins or +TIPs are a type of microtubule associated protein (MAP) which accumulate at the plus ends of microtubules. +TIPs are arranged in diverse groups which are classified based on their structural components; however, all classifications are distinguished by their specific accumulation at the plus end of microtubules and their ability to maintain interactions between themselves and other +TIPs regardless of type. +TIPs can be either membrane bound or cytoplasmic, depending on the type of +TIPs. Most +TIPs track the ends of extending microtubules in a non-autonomous manner.

References

  1. Castillo, Andrea R.; et al. "The yeast protein kinase Mps1p is required for assembly of the integral spindle pole body for component Spc42p" (PDF). Archived from the original (PDF) on 2011-07-13. Retrieved 2009-07-21.