Undulipodium

Last updated

An undulipodium or undulopodium (Greek: "swinging foot"; plural undulipodia), or a 9+2 organelle is a motile filamentous extracellular projection of eukaryotic cells. It is basically synonymous to flagella and cilia which are differing terms for similar molecular structures used on different types of cells, and usually correspond to different waveforms.

The name was coined to differentiate from the analogous structures present in prokaryotic cells. [1] [2]

The usage of the term was early supported by Lynn Margulis, especially in support of endosymbiotic theory. [3] The eukaryotic cilia are structurally identical to eukaryotic flagella, although distinctions are sometimes made according to function and/or length. [4] The Gene Ontology database does not make a distinction between the two, referring to most undulipodia as "motile cilium", and to that in the sperm as sperm flagellum. [5]

Usage

In the 1980s, biologists such as Margulis advocated the use of the name "undulipodium", because of the apparent structural and functional differences between the cilia and flagella of prokaryotic and eukaryotic cells. They argued that the name "flagellum" should be restricted to prokaryotic organelles, such as bacterial flagella and spirochaete axial filaments. [6] A distinction was drawn between "primary" cilia which function as sensory antennae, and ordinary cilia: it was argued that these were not undulipodia as they lacked a rotary movement mechanism. [7]

However, the term "undulipodium" is not generally endorsed by biologists, who argue that the original purpose of the name does not sufficiently differentiate the cilia and flagella of eukaryotic from those of prokaryotic cells. For example, the early concept was the trivial homology of the flagella of flagellates and the pseudopodia of amoebae. The consensus terminology is to use "cilium" and "flagellum" for all purposes. [1] [8]

Related Research Articles

<span class="mw-page-title-main">Cell (biology)</span> Basic unit of all known organisms

The cell is the basic structural and functional unit of life forms. Every cell consists of a cytoplasm enclosed within a membrane, and contains many biomolecules such as proteins, DNA and RNA, as well as many small molecules of nutrients and metabolites. The term comes from the Latin word cellula meaning 'small room'.

<span class="mw-page-title-main">Centriole</span> Organelle in eukaryotic cells that produces cilia and organizes the mitotic spindle

In cell biology a centriole is a cylindrical organelle composed mainly of a protein called tubulin. Centrioles are found in most eukaryotic cells, but are not present in conifers (Pinophyta), flowering plants (angiosperms) and most fungi, and are only present in the male gametes of charophytes, bryophytes, seedless vascular plants, cycads, and Ginkgo. A bound pair of centrioles, surrounded by a highly ordered mass of dense material, called the pericentriolar material (PCM), makes up a structure called a centrosome.

<span class="mw-page-title-main">Microtubule</span> Polymer of tubulin that forms part of the cytoskeleton

Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm and have an inner diameter between 11 and 15 nm. They are formed by the polymerization of a dimer of two globular proteins, alpha and beta tubulin into protofilaments that can then associate laterally to form a hollow tube, the microtubule. The most common form of a microtubule consists of 13 protofilaments in the tubular arrangement.

In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name organelle comes from the idea that these structures are parts of cells, as organs are to the body, hence organelle, the suffix -elle being a diminutive. Organelles are either separately enclosed within their own lipid bilayers or are spatially distinct functional units without a surrounding lipid bilayer. Although most organelles are functional units within cells, some function units that extend outside of cells are often termed organelles, such as cilia, the flagellum and archaellum, and the trichocyst.

<span class="mw-page-title-main">Flagellum</span> Cellular appendage functioning as locomotive or sensory organelle

A flagellum is a hairlike appendage that protrudes from certain plant and animal sperm cells, and from a wide range of microorganisms to provide motility. Many protists with flagella are termed as flagellates.

<span class="mw-page-title-main">Cilium</span> Organelle found on eukaryotic cells

The cilium, plural cilia, is a membrane-bound organelle found on most types of eukaryotic cell, and certain microorganisms known as ciliates. Cilia are absent in bacteria and archaea. The cilium has the shape of a slender threadlike projection that extends from the surface of the much larger cell body. Eukaryotic flagella found on sperm cells and many protozoans have a similar structure to motile cilia that enables swimming through liquids; they are longer than cilia and have a different undulating motion.

<span class="mw-page-title-main">Evolution of flagella</span> Origin of three known varieties of flagella

The evolution of flagella is of great interest to biologists because the three known varieties of flagella – each represent a sophisticated cellular structure that requires the interaction of many different systems.

<span class="mw-page-title-main">Centrosome</span> Cell organelle in animal cell helping in cell division

In cell biology, the centrosome is an organelle that serves as the main microtubule organizing center (MTOC) of the animal cell, as well as a regulator of cell-cycle progression. The centrosome provides structure for the cell. The centrosome is thought to have evolved only in the metazoan lineage of eukaryotic cells. Fungi and plants lack centrosomes and therefore use other structures to organize their microtubules. Although the centrosome has a key role in efficient mitosis in animal cells, it is not essential in certain fly and flatworm species.

<span class="mw-page-title-main">Kinetoplastida</span> Flagellated protists belonging to the phylum Euglenozoa

Kinetoplastida is a group of flagellated protists belonging to the phylum Euglenozoa, and characterised by the presence of an organelle with a large massed DNA called kinetoplast. The organisms are commonly referred to as "kinetoplastids" or "kinetoplasts" The group includes a number of parasites responsible for serious diseases in humans and other animals, as well as various forms found in soil and aquatic environments. Their distinguishing feature, the presence of a kinetoplast, is an unusual DNA-containing granule located within the single mitochondrion associated with the base of the cell's flagellum. The kinetoplast contains many copies of the mitochondrial genome.

<span class="mw-page-title-main">Cytoskeleton</span> Network of filamentous proteins that forms the internal framework of cells

The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is composed of similar proteins in the various organisms. It is composed of three main components, microfilaments, intermediate filaments and microtubules, and these are all capable of rapid growth or disassembly dependent on the cell's requirements.

The microtubule-organizing center (MTOC) is a structure found in eukaryotic cells from which microtubules emerge. MTOCs have two main functions: the organization of eukaryotic flagella and cilia and the organization of the mitotic and meiotic spindle apparatus, which separate the chromosomes during cell division. The MTOC is a major site of microtubule nucleation and can be visualized in cells by immunohistochemical detection of γ-tubulin. The morphological characteristics of MTOCs vary between the different phyla and kingdoms. In animals, the two most important types of MTOCs are 1) the basal bodies associated with cilia and flagella and 2) the centrosome associated with spindle formation.

<span class="mw-page-title-main">Basal body</span> Protein structure found at the base of cilium or flagellum).

A basal body is a protein structure found at the base of a eukaryotic undulipodium. The basal body was named by Theodor Wilhelm Engelmann in 1880. It is formed from a centriole and several additional protein structures, and is, essentially, a modified centriole. The basal body serves as a nucleation site for the growth of the axoneme microtubules. Centrioles, from which basal bodies are derived, act as anchoring sites for proteins that in turn anchor microtubules, and are known as the microtubule organizing center (MTOC). These microtubules provide structure and facilitate movement of vesicles and organelles within many eukaryotic cells.

<span class="mw-page-title-main">Axoneme</span>

An axoneme, also called an axial filament is the microtubule-based cytoskeletal structure that forms the core of a cilium or flagellum. Cilia and flagella are found on many cells, organisms, and microorganisms, to provide motility. The axoneme serves as the "skeleton" of these organelles, both giving support to the structure and, in some cases, the ability to bend. Though distinctions of function and length may be made between cilia and flagella, the internal structure of the axoneme is common to both.

<span class="mw-page-title-main">Sperm</span> Male reproductive cell in anisogamous forms of sexual reproduction

Sperm is the male reproductive cell, or gamete, in anisogamous forms of sexual reproduction. Animals produce motile sperm with a tail known as a flagellum, which are known as spermatozoa, while some red algae and fungi produce non-motile sperm cells, known as spermatia. Flowering plants contain non-motile sperm inside pollen, while some more basal plants like ferns and some gymnosperms have motile sperm.

<span class="mw-page-title-main">Intraflagellar transport</span> Cellular process

Intraflagellar transport (IFT) is a bidirectional motility along axoneme microtubules that is essential for the formation (ciliogenesis) and maintenance of most eukaryotic cilia and flagella. It is thought to be required to build all cilia that assemble within a membrane projection from the cell surface. Plasmodium falciparum cilia and the sperm flagella of Drosophila are examples of cilia that assemble in the cytoplasm and do not require IFT. The process of IFT involves movement of large protein complexes called IFT particles or trains from the cell body to the ciliary tip and followed by their return to the cell body. The outward or anterograde movement is powered by kinesin-2 while the inward or retrograde movement is powered by cytoplasmic dynein 2/1b. The IFT particles are composed of about 20 proteins organized in two subcomplexes called complex A and B.

The radial spoke is a multi-unit protein structure found in the axonemes of eukaryotic cilia and flagella. Although experiments have determined the importance of the radial spoke in the proper function of these organelles, its structure and mode of action remain poorly understood.

Ciliogenesis is defined as the building of the cell's antenna or extracellular fluid mediation mechanism. It includes the assembly and disassembly of the cilia during the cell cycle. Cilia are important organelles of cells and are involved in numerous activities such as cell signaling, processing developmental signals, and directing the flow of fluids such as mucus over and around cells. Due to the importance of these cell processes, defects in ciliogenesis can lead to numerous human diseases related to non-functioning cilia. Ciliogenesis may also play a role in the development of left/right handedness in humans.

<span class="mw-page-title-main">Boris Kozo-Polyansky</span>

Boris Mikhailovich Kozo-Polyansky was a Soviet and Russian botanist and evolutionary biologist, best known for his seminal work, Symbiogenesis: A New Principle of Evolution, which was the first work to place the theory of symbiogenesis into a Darwinian evolutionary context, as well as one of the first to redefine cell theory.

Karl Wilhelm Zimmermann was a German anatomist, pathologist and histologist, known for his eponymous contribution in the Zimmermann–Laband syndrome. His name also appears in Zimmermann's arch and Zimmermann's elementary particle.

<span class="mw-page-title-main">Protist locomotion</span> Motion system of a type of eukaryotic organism

Protists are the eukaryotes that cannot be classified as plants, fungi or animals. They are mostly unicellular and microscopic. Many unicellular protists, particularly protozoans, are motile and can generate movement using flagella, cilia or pseudopods. Cells which use flagella for movement are usually referred to as flagellates, cells which use cilia are usually referred to as ciliates, and cells which use pseudopods are usually referred to as amoeba or amoeboids. Other protists are not motile, and consequently have no built-in movement mechanism.

References

  1. 1 2 Hülsmann N (1992). "Undulipodium: End of a useless discussion". European Journal of Protistology. 28 (3): 253–257. doi:10.1016/S0932-4739(11)80231-2. PMID   23195228.
  2. Margulis L, Lovelock JE. "CP-2156 Life In The Universe: Atmospheres and Evolution". history.nasa.gov. Retrieved 8 July 2013.
  3. Sagan L (1967). "On the origin of mitosing cells". J Theor Biol . 14 (3): 255–274. doi:10.1016/0022-5193(67)90079-3. PMID   11541392.
  4. Haimo LT, Rosenbaum JL (December 1981). "Cilia, flagella, and microtubules". J. Cell Biol. 91 (3 Pt 2): 125s–130s. doi:10.1083/jcb.91.3.125s. PMC   2112827 . PMID   6459327.
  5. "Term Details for "motile cilium" (GO:0005929)". AmiGO 2. Synonyms: motile cilia, microtubule-based flagellum, motile primary cilia, motile primary cilium, motile secondary cilium, nodal cilium
  6. Margulis L (1980). "Undulipodia, flagella and cilia". Biosystems. 12 (1–2): 105–108. doi:10.1016/0303-2647(80)90041-6. PMID   7378551.
  7. Satir P, Christensen ST (June 2008). "Structure and function of mammalian cilia". Histochem. Cell Biol. 129 (6): 687–93. doi:10.1007/s00418-008-0416-9. PMC   2386530 . PMID   18365235.
  8. Corliss JO (1980). "Objection to "undulipodium" as an inappropriate and unnecessary term". Biosystems. 12 (1–2): 109–110. doi:10.1016/0303-2647(80)90042-8. PMID   7378552.