XY sex-determination system

Last updated
Drosophila sex-chromosomes Drosophila XY sex-determination.svg
Drosophila sex-chromosomes
Ginkgo biloba male flower.jpg
Pollen cones of a male Ginkgo biloba tree, a dioecious species
Ginkgo biloba female flower.jpg
Ovules of a female Ginkgo biloba

The XY sex-determination system is a sex-determination system used to classify many mammals, including humans, some insects ( Drosophila ), some snakes, some fish (guppies), and some plants ( Ginkgo tree). In this system, the sex of an individual is determined by a pair of sex chromosomes. Females have two of the same kind of sex chromosome (XX), and are called the homogametic sex. Males have two different kinds of sex chromosomes (XY), and are called the heterogametic sex. [1]

Contents

In humans, the presence of the Y chromosome is responsible for triggering male development; in the absence of the Y chromosome, the fetus will undergo female development. There are various exceptions, such as individuals with Klinefelter syndrome (who have XXY chromosomes), Swyer syndrome (women with XY chromosomes), and XX male syndrome (de la Chapelle syndrome, men with XX chromosomes), however these exceptions are rare. In some instances, a seemingly normal female with a vagina, cervix, and ovaries has XY chromosomes, but the SRY gene has been shut down. [2] In most species with XY sex determination, an organism must have at least one X chromosome in order to survive. [3] [4]

The XY system contrasts in several ways with the ZW sex-determination system found in birds, some insects, many reptiles, and various other animals, in which the heterogametic sex is female. It had been thought for several decades that in all snakes sex was determined by the ZW system, but there had been observations of unexpected effects in the genetics of species in the families Boidae and Pythonidae; for example, parthenogenic reproduction produced only females rather than males, which is the opposite of what is to be expected in the ZW system. In the early years of the 21st century such observations prompted research that demonstrated that all pythons and boas so far investigated definitely have the XY system of sex determination. [5] [6]

A temperature-dependent sex determination system is found in some reptiles and fish.

Mechanisms

All animals have a set of DNA coding for genes present on chromosomes. In humans, most mammals, and some other species, two of the chromosomes, called the X chromosome and Y chromosome, code for sex. In these species, one or more genes are present on their Y chromosome that determine maleness. In this process, an X chromosome and a Y chromosome act to determine the sex of offspring, often due to genes located on the Y chromosome that code for maleness. Offspring have two sex chromosomes: an offspring with two X chromosomes (XX) will develop female characteristics, and an offspring with an X and a Y chromosome (XY) will develop male characteristics.

Mammals

In most mammals, sex is determined by presence of the Y chromosome. This makes individuals with XXY and XYY karyotypes males, and individuals with X and XXX karyotypes females. [1]

In the 1930s, Alfred Jost determined that the presence of testosterone was required for Wolffian duct development in the male rabbit. [7]

SRY is a sex-determining gene on the Y chromosome in the therians (placental mammals and marsupials). [8] Non-human mammals use several genes on the Y chromosome.[ citation needed ]

Not all male-specific genes are located on the Y chromosome. The platypus, a monotreme, use five pairs of different XY chromosomes with six groups of male-linked genes, AMH being the master switch. [9]

Humans

Human male XY chromosomes after G-banding Human male karyotpe high resolution - XY chromosome cropped.JPG
Human male XY chromosomes after G-banding

A single gene ( SRY ) present on the Y chromosome acts as a signal to set the developmental pathway towards maleness. Presence of this gene starts off the process of virilization. This and other factors result in the sex differences in humans. [10] The cells in females, with two X chromosomes, undergo X-inactivation, in which one of the two X chromosomes is inactivated. The inactivated X chromosome remains within a cell as a Barr body.

Other animals

Some species of turtles have convergently evolved XY sex determination systems, specifically those in Chelidae and Staurotypinae. [11]

Other species (including most Drosophila species) use the presence of two X chromosomes to determine femaleness: one X chromosome gives putative maleness, but the presence of Y chromosome genes is required for normal male development. In the fruit fly individuals with XY are male and individuals with XX are female; however, individuals with XXY or XXX can also be female, and individuals with X can be males. [12]

Plants

Very few dioecious angiosperm species have XY sex determination, [13] such as the Silene latifolia. [14] In these species sex determination is similar to mammals where male is XY and female is XX. [15]

Other systems

Whilst XY sex determination is the most familiar, since it is the system that humans use, there are a range of alternative systems found in nature. The inverse of the XY system (called ZW to distinguish it) is used in birds and many insects, in which it is the females that are heterogametic (ZW), while males are homogametic (ZZ). [16]

Many insects of the order Hymenoptera instead have a haplo-diploid system, where the females are full diploids (with all chromosomes appearing in pairs) but males are haploid (having just one copy of all chromosomes). Some other insects have the X0 sex-determination system , where just the sex-determining chromosome varies in ploidy (XX in females but X in males), while all other chromosomes appear in pairs in both sexes. [17]

Influences

Genetic

PBB Protein SRY image PBB Protein SRY image.jpg
PBB Protein SRY image

In an interview for the Rediscovering Biology website, [18] researcher Eric Vilain described how the paradigm changed since the discovery of the SRY gene:

For a long time we thought that SRY would activate a cascade of male genes. It turns out that the sex determination pathway is probably more complicated and SRY may in fact inhibit some anti-male genes.

The idea is instead of having a simplistic mechanism by which you have pro-male genes going all the way to make a male, in fact there is a solid balance between pro-male genes and anti-male genes and if there is a little too much of anti-male genes, there may be a female born and if there is a little too much of pro-male genes then there will be a male born.

We [are] entering this new era in molecular biology of sex determination where it's a more subtle dosage of genes, some pro-males, some pro-females, some anti-males, some anti-females that all interplay with each other rather than a simple linear pathway of genes going one after the other, which makes it very fascinating but very complicated to study.

In an interview by Scientific American in 2007, Vilian was asked: "It sounds as if you are describing a shift from the prevailing view that female development is a default molecular pathway to active pro-male and antimale pathways. Are there also pro-female and antifemale pathways?" [19] He replied:

Modern sex determination started at the end of the 1940s—1947—when the French physiologist Alfred Jost said it's the testis that is determining sex. Having a testis determines maleness, not having a testis determines femaleness. The ovary is not sex-determining. It will not influence the development of the external genitalia. Now in 1959 when the karyotype of Klinefelter [a male who is XXY] and Turner [a female who has one X] syndromes was discovered, it became clear that in humans it was the presence or the absence of the Y chromosome that's sex determining. Because all Klinefelters that have a Y are male, whereas Turners, who have no Y, are females. So it's not a dosage or the number of X's, it's really the presence or absence of the Y. So if you combine those two paradigms, you end up having a molecular basis that's likely to be a factor, a gene, that's a testis-determining factor, and that's the sex-determining gene. So the field based on that is really oriented towards finding testis-determining factors. What we discovered, though, was not just pro-testis determining factors. There are a number of factors that are there, like WNT4, like DAX1, whose function is to counterbalance the male pathway.

In mammals, including humans, the SRY gene triggers the development of non-differentiated gonads into testes rather than ovaries. However, there are cases in which testes can develop in the absence of an SRY gene (see sex reversal). In these cases, the SOX9 gene, involved in the development of testes, can induce their development without the aid of SRY. In the absence of SRY and SOX9, no testes can develop and the path is clear for the development of ovaries. Even so, the absence of the SRY gene or the silencing of the SOX9 gene are not enough to trigger sexual differentiation of a fetus in the female direction. A recent finding suggests that ovary development and maintenance is an active process, [20] regulated by the expression of a "pro-female" gene, FOXL2. In an interview [21] for the TimesOnline edition, study co-author Robin Lovell-Badge explained the significance of the discovery:

We take it for granted that we maintain the sex we are born with, including whether we have testes or ovaries. But this work shows that the activity of a single gene, FOXL2, is all that prevents adult ovary cells turning into cells found in testes.

Implications

Looking into the genetic determinants of human sex can have wide-ranging consequences. Scientists have been studying different sex determination systems in fruit flies and animal models to attempt an understanding of how the genetics of sexual differentiation can influence biological processes like reproduction, ageing [22] and disease.

Maternal

In humans and many other species of animals, the father determines the sex of the child. In the XY sex-determination system, the female-provided ovum contributes an X chromosome and the male-provided sperm contributes either an X chromosome or a Y chromosome, resulting in female (XX) or male (XY) offspring, respectively.

Hormone levels in the male parent affect the sex ratio of sperm in humans. [23] Maternal influences also impact which sperm are more likely to achieve conception.

Human ova, like those of other mammals, are covered with a thick translucent layer called the zona pellucida, which the sperm must penetrate to fertilize the egg. Once viewed simply as an impediment to fertilization, recent research indicates the zona pellucida may instead function as a sophisticated biological security system that chemically controls the entry of the sperm into the egg and protects the fertilized egg from additional sperm. [24]

Recent research indicates that human ova may produce a chemical which appears to attract sperm and influence their swimming motion. However, not all sperm are positively impacted; some appear to remain uninfluenced and some actually move away from the egg. [25]

Maternal influences may also be possible that affect sex determination in such a way as to produce fraternal twins equally weighted between one male and one female. [26]

The time at which insemination occurs during the estrus cycle has been found to affect the sex ratio of the offspring of humans, cattle, hamsters, and other mammals. [23] Hormonal and pH conditions within the female reproductive tract vary with time, and this affects the sex ratio of the sperm that reach the egg. [23]

Sex-specific mortality of embryos also occurs. [23]

History

Ancient ideas on sex determination

Aristotle believed incorrectly that the sex of an infant is determined by how much heat a man's sperm had during insemination. He wrote:

... the semen of the male differs from the corresponding secretion of the female in that it contains a principle within itself of such a kind as to set up movements also in the embryo and to concoct thoroughly the ultimate nourishment, whereas the secretion of the female contains material alone. If, then, the male element prevails it draws the female element into itself, but if it is prevailed over it changes into the opposite or is destroyed.

Aristotle claimed in error that the male principle was the driver behind sex determination, [27] such that if the male principle was insufficiently expressed during reproduction, the fetus would develop as a female.

20th century genetics

Nettie Stevens in 1904 Nettie Maria Stevens.jpg
Nettie Stevens in 1904
Edmund Beecher Wilson, before 1891 Edmund Beecher Wilson between about 1885 and 1891.jpg
Edmund Beecher Wilson, before 1891

Nettie Stevens (working with beetles) and Edmund Beecher Wilson (working with hemiptera) are credited with independently discovering, in 1905, the chromosomal XY sex-determination system in insects: the fact that males have XY sex chromosomes and females have XX sex chromosomes. [28] [29] [30] In the early 1920s, Theophilus Painter demonstrated that sex in humans (and other mammals) was also determined by the X and Y chromosomes, and the chromosomes that make this determination are carried by the spermatozoa. [31]

The first clues to the existence of a factor that determines the development of testis in mammals came from experiments carried out by Alfred Jost, [32] who castrated embryonic rabbits in utero and noticed that they all acquired a female phenotype. [33]

In 1959, C. E. Ford and his team, in the wake of Jost's experiments, discovered [34] that the Y chromosome was needed for a fetus to develop as male when they examined patients with Turner's syndrome, who grew up as phenotypic females, and found them to be X0 (hemizygous for X and no Y). At the same time, Jacob & Strong described a case of a patient with Klinefelter syndrome (XXY), [35] which implicated the presence of a Y chromosome in development of maleness. [36]

All these observations led to a consensus that a dominant gene that determines testis development (TDF) must exist on the human Y chromosome. [36] The search for this testis-determining factor (TDF) led a team of scientists [37] in 1990 to discover a region of the Y chromosome that is necessary for the male sex determination, which was named SRY (sex-determining region of the Y chromosome). [36]

See also

Related Research Articles

<span class="mw-page-title-main">Sex</span> Trait that determines an organisms sexually reproductive function

Sex is the trait that determines whether a sexually reproducing organism produces male or female gametes. During sexual reproduction, a male and a female gamete fuse to form a zygote, which develops into an offspring that inherits traits from each parent. By convention, organisms that produce smaller, more mobile gametes are called male, while organisms that produce larger, non-mobile gametes are called female. An organism that produces both types of gamete is hermaphrodite.

<span class="mw-page-title-main">Sex-determination system</span> Biological system that determines the development of an organisms sex

A sex-determination system is a biological system that determines the development of sexual characteristics in an organism. Most organisms that create their offspring using sexual reproduction have two common sexes and a few less common intersex variations.

<span class="mw-page-title-main">Gonad</span> Gland that produces sex cells

A gonad, sex gland, or reproductive gland is a mixed gland that produces the gametes and sex hormones of an organism. Female reproductive cells are egg cells, and male reproductive cells are sperm. The male gonad, the testicle, produces sperm in the form of spermatozoa. The female gonad, the ovary, produces egg cells. Both of these gametes are haploid cells. Some hermaphroditic animals have a type of gonad called an ovotestis.

<span class="mw-page-title-main">Y chromosome</span> Sex chromosome in the XY sex-determination system

The Y chromosome is one of two sex chromosomes in therian mammals and other organisms. Along with the X chromosome, it is part of the XY sex-determination system, in which the Y is the sex-determining because it is the presence or absence of Y chromosome that determines the male or female sex of offspring produced in sexual reproduction. In mammals, the Y chromosome contains the SRY gene, which triggers development of male gonads. The Y chromosome is passed only from male parents to male offspring.

<span class="mw-page-title-main">Sex-determining region Y protein</span> Protein that initiates male sex determination in therian mammals

Sex-determining region Y protein (SRY), or testis-determining factor (TDF), is a DNA-binding protein encoded by the SRY gene that is responsible for the initiation of male sex determination in therian mammals. SRY is an intronless sex-determining gene on the Y chromosome. Mutations in this gene lead to a range of disorders of sex development with varying effects on an individual's phenotype and genotype.

<span class="mw-page-title-main">Sex-chromosome dosage compensation</span>

Dosage compensation is the process by which organisms equalize the expression of genes between members of different biological sexes. Across species, different sexes are often characterized by different types and numbers of sex chromosomes. In order to neutralize the large difference in gene dosage produced by differing numbers of sex chromosomes among the sexes, various evolutionary branches have acquired various methods to equalize gene expression among the sexes. Because sex chromosomes contain different numbers of genes, different species of organisms have developed different mechanisms to cope with this inequality. Replicating the actual gene is impossible; thus organisms instead equalize the expression from each gene. For example, in humans, female (XX) cells randomly silence the transcription of one X chromosome, and transcribe all information from the other, expressed X chromosome. Thus, human females have the same number of expressed X-linked genes per cell as do human males (XY), both sexes having essentially one X chromosome per cell, from which to transcribe and express genes.

<span class="mw-page-title-main">Male</span> Sex of an organism which produces sperm

Male is the sex of an organism that produces the gamete known as sperm, which fuses with the larger female gamete, or ovum, in the process of fertilisation. A male organism cannot reproduce sexually without access to at least one ovum from a female, but some organisms can reproduce both sexually and asexually. Most male mammals, including male humans, have a Y chromosome, which codes for the production of larger amounts of testosterone to develop male reproductive organs.

<span class="mw-page-title-main">Male reproductive system</span> Reproductive system of the human male

The male reproductive system consists of a number of sex organs that play a role in the process of human reproduction. These organs are located on the outside of the body, and within the pelvis.

<span class="mw-page-title-main">XX male syndrome</span> Congenital condition where an individual with a 46,XX karyotype is male

XX male syndrome, also known as de la Chapelle syndrome, is a rare condition in which an individual with a 46,XX karyotype develops a male phenotype. Synonyms for XX male syndrome include 46,XX testicular difference of sex development

<span class="mw-page-title-main">XO sex-determination system</span> Biological system that determines the sex of offspring

The XO sex-determination system is a system that some species of insects, arachnids, and mammals use to determine the sex of offspring. In this system, there is only one sex chromosome, referred to as X. Males only have one X chromosome (XO), while females have two (XX). The letter O signifies the lack of a Y chromosome. Maternal gametes always contain an X chromosome, so the sex of the animals' offspring depends on whether a sex chromosome is present in the male gamete. Its sperm normally contains either one X chromosome or no sex chromosomes at all.

<span class="mw-page-title-main">ZW sex-determination system</span> Chromosomal system

The ZW sex-determination system is a chromosomal system that determines the sex of offspring in birds, some fish and crustaceans such as the giant river prawn, some insects, the schistosome family of flatworms, and some reptiles, e.g. majority of snakes, lacertid lizards and monitors, including Komodo dragons. It is also present in some plants, where it has probably evolved independently on several occasions. The letters Z and W are used to distinguish this system from the XY sex-determination system. In the ZW system, females have a pair of dissimilar ZW chromosomes, and males have two similar ZZ chromosomes.

<span class="mw-page-title-main">Genital ridge</span>

The genital ridge is the precursor to the gonads. The genital ridge initially consists mainly of mesenchyme and cells of underlying mesonephric origin. Once oogonia enter this area they attempt to associate with these somatic cells. Development proceeds and the oogonia become fully surrounded by a layer of cells.

<span class="mw-page-title-main">XXYY syndrome</span> Extra X and Y chromosome in males

XXYY syndrome is a sex chromosome anomaly in which males have 2 extra chromosomes, one X and one Y chromosome. Human cells usually contain two sex chromosomes, one from the mother and one from the father. Usually, females have two X chromosomes (XX) and males have one X and one Y chromosome (XY). The appearance of at least one Y chromosome with a properly functioning SRY gene makes a male. Therefore, humans with XXYY are genotypically male. Males with XXYY syndrome have 48 chromosomes instead of the typical 46. This is why XXYY syndrome is sometimes written as 48, XXYY syndrome or 48, XXYY. It affects an estimated one in every 18,000–40,000 male births.

<span class="mw-page-title-main">Gonadal dysgenesis</span> Congenital disorder of the reproductive system

Gonadal dysgenesis is classified as any congenital developmental disorder of the reproductive system in humans. It is atypical development of gonads in an embryo. One type of gonadal dysgenesis is the development of functionless, fibrous tissue, termed streak gonads, instead of reproductive tissue. Streak gonads are a form of aplasia, resulting in hormonal failure that manifests as sexual infantism and infertility, with no initiation of puberty and secondary sex characteristics.

<span class="mw-page-title-main">Sex chromosome</span> Chromosome that differs from an ordinary autosome in form, size, and behavior

Sex chromosomes are chromosomes that carry the genes that determine the sex of an individual. The human sex chromosomes are a typical pair of mammal allosomes. They differ from autosomes in form, size, and behavior. Whereas autosomes occur in homologous pairs whose members have the same form in a diploid cell, members of an allosome pair may differ from one another.

<span class="mw-page-title-main">Sexual differentiation in humans</span> Process of development of sex differences in humans

Sexual differentiation in humans is the process of development of sex differences in humans. It is defined as the development of phenotypic structures consequent to the action of hormones produced following gonadal determination. Sexual differentiation includes development of different genitalia and the internal genital tracts and body hair plays a role in sex identification.

46,XX/46,XY is a chimeric genetic condition characterized by the presence of some cells that express a 46,XX karyotype and some cells that express a 46,XY karyotype in a single human being. The cause of the condition lies in utero with the aggregation of two distinct blastocysts or zygotes into a single embryo, which subsequently leads to the development of a single individual with two distinct cell lines, instead of a pair of fraternal twins. 46,XX/46,XY chimeras are the result of the merging of two non-identical twins. This is not to be confused with mosaicism or hybridism, neither of which are chimeric conditions.

Sex reversal is a biological process whereby the pathway directed towards the already determined-sex fate is flipped towards the opposite sex, creating a discordance between the primary sex fate and the sex phenotype expressed. The process of sex reversal occurs during embryonic development or before gonad differentiation. In GSD species, sex reversal means that the sexual phenotype is discordant with the genetic/chromosomal sex. In TSD species, sex reversal means that the temperature/conditions that usually trigger the differentiation towards one sexual phenotype are producing the opposite sexual phenotype.

Jennifer Ann Marshall Graves is an Australian geneticist. She is Distinguished Professor within the La Trobe Institute for Molecular Science, La Trobe University, Australia and Professor Emeritus of the Australian National University.

<span class="mw-page-title-main">Four Core Genotypes mouse model</span>

Four Core Genotypes (FCG) mice are laboratory mice produced by genetic engineering that allow biomedical researchers to determine if a sex difference in phenotype is caused by effects of gonadal hormones or sex chromosome genes. The four genotypes include XX and XY mice with ovaries, and XX and XY mice with testes. The comparison of XX and XY mice with the same type of gonad reveals sex differences in phenotypes that are caused by sex chromosome genes. The comparison of mice with different gonads but the same sex chromosomes reveals sex differences in phenotypes that are caused by gonadal hormones.

References

  1. 1 2 Hake, Laura; O'Connor, Clare (2008). "Genetic Mechanisms of Sex Determination | Learn Science at Scitable". Nature. Archived from the original on 2021-04-28. Retrieved 2021-04-13.
  2. Callaway, Ewen (9 April 2009). "Girl with Y chromosome sheds light on maleness". New Scientist. Retrieved 2023-02-22.
  3. Sherwood, Susan. "Can a Zygote Survive Without an X Sex Chromosome?". Education - Seattle PI. Retrieved 2020-11-08.
  4. Sherwood, Susan (April 25, 2017). "What Occurs When the Zygote Has One Fewer Chromosome than Usual?". Sciencing. Retrieved 2021-04-29.
  5. Gamble, Tony; Castoe, Todd A.; Nielsen, Stuart V.; Banks, Jaison L.; Card, Daren C.; Schield, Drew R.; Schuett, Gordon W.; Booth, Warren (2017). "The Discovery of XY Sex Chromosomes in a Boa and Python" (PDF). Current Biology. 27 (14): 2148–2153.e4. Bibcode:2017CBio...27E2148G. doi: 10.1016/j.cub.2017.06.010 . PMID   28690112. Archived (PDF) from the original on Nov 26, 2023 via e-Publications@Marquettee.
  6. Olena, Abby (July 6, 2017). "Snake Sex Determination Dogma Overturned" . The Scientist. Archived from the original on Dec 8, 2023.
  7. Jost, A.; Price, D.; Edwards, R. G. (1970). "Hormonal Factors in the Sex Differentiation of the Mammalian Foetus [and Discussion]". Philosophical Transactions of the Royal Society B: Biological Sciences. 259 (828): 119–31. Bibcode:1970RSPTB.259..119J. doi: 10.1098/rstb.1970.0052 . JSTOR   2417046. PMID   4399057.
  8. Wallis MC, Waters PD, Graves JA (June 2008). "Sex determination in mammals - Before and after the evolution of SRY". Cell. Mol. Life Sci. 65 (20): 3182–95. doi:10.1007/s00018-008-8109-z. PMID   18581056. S2CID   31675679.
  9. Cortez, Diego; Marin, Ray; Toledo-Flores, Deborah; Froidevaux, Laure; Liechti, Angélica; Waters, Paul D.; Grützner, Frank; Kaessmann, Henrik (24 April 2014). "Origins and functional evolution of Y chromosomes across mammals" (PDF). Nature. 508 (7497): 488–493. Bibcode:2014Natur.508..488C. doi:10.1038/nature13151. PMID   24759410. S2CID   4462870 . Archived (PDF) from the original on Aug 10, 2017.
  10. Fauci, Anthony S.; Braunwald, Eugene; Kasper, Dennis L.; Hauser, Stephen L.; Longo, Dan L.; Jameson, J. Larry; Loscalzo, Joseph (2008). Harrison's Principles of Internal Medicine (17th ed.). McGraw-Hill Medical. pp.  2339–2346. ISBN   978-0-07-147693-5.
  11. Badenhorst, Daleen; Stanyon, Roscoe; Engstrom, Tag; Valenzuela, Nicole (2013-04-01). "A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae" . Chromosome Research. 21 (2): 137–147. doi:10.1007/s10577-013-9343-2. ISSN   1573-6849. PMID   23512312. S2CID   14434440.
  12. Fusco G, Minelli A (2019-10-10). The Biology of Reproduction. Cambridge University Press. pp. 306–308. ISBN   978-1-108-49985-9.
  13. Gradstein, Stephan Robbert; Klatt, Simone; Normann, Felix; Wilson, Rosemary; Weigelt, Patrick; Willmann, Rainer (2008). Systematics 2008 Göttingen, Programme and Abstracts. Universitätsverlag Göttingen. p. 278. ISBN   978-3-940344-23-6.
  14. Monéger, Françoise (2007). "Sex Determination in Plants". Plant Signaling & Behavior. 2 (3): 178–179. Bibcode:2007PlSiB...2..178M. doi:10.4161/psb.2.3.3728. ISSN   1559-2316. PMC   2634050 . PMID   19704689.
  15. Hakeem, Khalid Rehman; Tombuloğlu, Hüseyin; Tombuloğlu, Güzin (2016-08-23). Plant Omics: Trends and Applications. Springer. p. 365. ISBN   978-3-319-31703-8.
  16. Smith, Craig A.; Sinclair, Andrew H. (February 2004). "Sex determination: insights from the chicken". BioEssays. 26 (2): 120–132. doi: 10.1002/bies.10400 . ISSN   0265-9247. PMID   14745830.
  17. "5 Types of Sex Determination in Animals". genetics.knoji.com. Archived from the original on 5 February 2017. Retrieved 3 May 2018.
  18. Rediscovering Biology, Unit 11 - Biology of Sex and Gender, Expert interview transcripts, Link Archived 2010-08-23 at the Wayback Machine
  19. Lehrman, Sally. "When a Person Is Neither XX nor XY: A Q&A with Geneticist Eric Vilain". Scientific American. Retrieved 2021-08-08.
  20. Uhlenhaut, N. Henriette; et al. (2009). "Somatic Sex Reprogramming of Adult Ovaries to Testes by FOXL2 Ablation". Cell. 139 (6): 1130–42. doi: 10.1016/j.cell.2009.11.021 . PMID   20005806.
  21. Scientists find single 'on-off' gene that can change gender traits Archived 2011-08-14 at the Wayback Machine , Hannah Devlin, The Times, December 11, 2009.
  22. Tower, John; Arbeitman, Michelle (2009). "The genetics of gender and life span". Journal of Biology. 8 (4): 38. doi: 10.1186/jbiol141 . PMC   2688912 . PMID   19439039.
  23. 1 2 3 4 Krackow, S. (1995). "Potential mechanisms for sex ratio adjustment in mammals and birds". Biological Reviews. 70 (2): 225–241. doi:10.1111/j.1469-185X.1995.tb01066.x. PMID   7605846. S2CID   27957961.
  24. Suzanne Wymelenberg, Science and Babies, National Academy Press, 1990, page 17
  25. Richard E. Jones and Kristin H. Lopez, Human Reproductive Biology, Third Edition, Elsevier, 2006, page 238
  26. Familial recurrence of gender-balanced twins Archived October 2, 2015, at the Wayback Machine
  27. De Generatione Animalium, 766B 15‑17.
  28. Brush, Stephen G. (June 1978). "Nettie M. Stevens and the Discovery of Sex Determination by Chromosomes". Isis. 69 (2): 162–172. doi:10.1086/352001. JSTOR   230427. PMID   389882. S2CID   1919033.
  29. "Specialized chromosomes determine sex. - Nettie Maria Stevens". DNA from the Beginning. Archived from the original on 2012-10-01. Retrieved 2016-07-07.
  30. John L. Heilbron (ed.), The Oxford Companion to the History of Modern Science, Oxford University Press, 2003, "genetics".
  31. Glass, Bentley (1990) Theophilus Shickel Painter 1889—1969: A Biographical Memoir , National Academy of Sciences, Washington DC. Retrieved 24 Jan 2022.
  32. Jost A., Recherches sur la differenciation sexuelle de l'embryon de lapin, Archives d'anatomie microscopique et de morphologie experimentale, 36: 271 – 315, 1947.
  33. Zhao, Fei; Yao, Humphrey Hung-Chang (September 2019). "A tale of two tracts: history, current advances, and future directions of research on sexual differentiation of reproductive tracts". Biology of Reproduction. 101 (3): 602–616. doi:10.1093/biolre/ioz079. PMC   6791057 . PMID   31058957.
  34. FORD CE, JONES KW, POLANI PE, DE ALMEIDA JC, BRIGGS JH (Apr 4, 1959). "A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome)". Lancet. 1 (7075): 711–3. doi:10.1016/S0140-6736(59)91893-8. PMID   13642858.
  35. JACOBS, PA; STRONG, JA (Jan 31, 1959). "A case of human intersexuality having a possible XXY sex-determining mechanism". Nature. 183 (4657): 302–3. Bibcode:1959Natur.183..302J. doi:10.1038/183302a0. PMID   13632697. S2CID   38349997.
  36. 1 2 3 Schoenwolf, Gary C. (2009). "Development of the Urogenital system". Larsen's human embryology (4th ed.). Philadelphia: Churchill Livingstone/Elsevier. pp. 307–9. ISBN   9780443068119.
  37. Sinclair, Andrew H.; et al. (19 July 1990). "A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif" . Nature. 346 (6281): 240–244. Bibcode:1990Natur.346..240S. doi:10.1038/346240a0. PMID   1695712. S2CID   4364032.