Primary life support system

Last updated
A portable life support system from the Apollo A7L suit, with its outer cover removed A7L plss.jpg
A portable life support system from the Apollo A7L suit, with its outer cover removed

A primary (or portable or personal) life support system (or subsystem) (PLSS), is a device connected to an astronaut or cosmonaut's spacesuit, which allows extra-vehicular activity with maximum freedom, independent of a spacecraft's life support system. A PLSS is generally worn like a backpack. The functions performed by the PLSS include:

Contents

The air handling function of a PLSS is similar to that of a diving rebreather, in that exhaled gases are recycled into the breathing gas in a closed loop.

When used in a microgravity environment, a separate propulsion system is generally needed for safety and control, since there is no physical connection to a spacecraft.

Apollo PLSS

The interior of the Apollo PLSS Apollo portable life support system.jpg
The interior of the Apollo PLSS
Diagram of the A7L PLSS and OPS, with interfaces to the astronaut and the Lunar Module cabin Plss100.jpg
Diagram of the A7L PLSS and OPS, with interfaces to the astronaut and the Lunar Module cabin

The portable life support system used in the Apollo lunar landing missions used lithium hydroxide to remove the carbon dioxide from the breathing air, and circulated water in an open loop through a liquid-cooled garment, expelling the water into space, where it turned to ice crystals. Some of the water was also used to remove excess heat from the astronaut's breathing air, and collected for dumping into the spacecraft's wastewater tank after an EVA. The PLSS also contained a radio transceiver and antenna for communications, which were relayed through the spacecraft's communication system to Earth. PLSS controls were provided in the Remote Control Unit (RCU) mounted on the astronaut's chest. Oxygen and water were rechargeable for multiple EVAs from the spacecraft's environmental control system.

Lunar surface EVA times for the first four missions (Apollo 11 through 14) were limited to 4 hours, with oxygen stored at 1,020 pounds per square inch (7.0 MPa), 3.0 pounds (1.4 kg) of lithium hydroxide, 8.5 pounds (3.9 liters) of cooling water, and a 279 watt-hour battery. For the extended missions of Apollo 15 through 17, the EVA stay time was doubled to 8 hours by increasing oxygen to 1,430 pounds per square inch (9.9 MPa), lithium hydroxide to 3.12 pounds (1.42 kg), cooling water to 11.5 pounds (5.2 liters), and battery capacity to 390 watt-hours. [1]

An emergency backup was provided in case the main system failed, by a separate unit called the Oxygen Purge System (OPS), mounted on top of the PLSS, immediately behind the astronaut's helmet. The OPS maintained suit pressure and removed carbon dioxide, heat and water vapor through a continuous, one-way air flow vented to space. When activated, the OPS provided oxygen to a separate inlet on the pressure suit, once a vent valve on a separate suit outlet was manually opened. The OPS provided a maximum of about 30 minutes of emergency oxygen for breathing and cooling. [2] This could be extended to 75 to 90 minutes with a "buddy system" hose that used the other astronaut's functional PLSS for cooling (only). This allowed the vent valve to be partly closed to decrease the oxygen flow rate. [1]

James P. Lucas testing the PLSS at Houston Flight Center JPLucas testing PLSS for Apollo.jpg
James P. Lucas testing the PLSS at Houston Flight Center

The PLSS was 26 inches (66 cm) high, 18 inches (46 cm) wide, and 10 inches (25 cm) deep. It was tested at the Houston Flight Center by James P. Lucas, working for Hamilton Standard, and by various astronauts in neutral buoyancy tanks at Dallas. It was tested in space for the first time by Rusty Schweickart in a stand-up EVA in Earth orbit on Apollo 9. His PLSS weighed 84 pounds (38 kg) on Earth, but only 14 lb (equivalent to the Earth weight of 6.4 kg) on the Moon. The OPS weighed 41 pounds (19 kg) on Earth (6.8 lb (equivalent to the Earth weight of 3.1 kg) on the Moon). [3]

Space Shuttle/International Space Station PLSS

Similar systems have been used by Space Shuttle astronauts, and are currently used by International Space Station crews.

The primary life support system for the EMU suit used on the Space Shuttle and International Space Station is manufactured by Hamilton Sundstrand. It is mounted to the back of the Hard Upper Torso (HUT) assembly.

Oxygen (O2), carbon dioxide (CO2) and water vapor are drawn from the extremities of the suit by the liquid cooling and ventilation garment or LCVG, which sends the gas to the PLSS. When gas enters the PLSS, activated charcoal removes odors and lithium hydroxide (LiOH) removes carbon dioxide. Next, the gas passes through a fan which maintains a flow rate of about six cubic feet per minute. A sublimator then condenses water vapor, which is removed by a "slurper" and a rotary separator. The removed water is stored and used to supplement the water supply used in the LCVG. The sublimator also cools the remaining oxygen to about 55 °F (13 °C). A flow sensor monitors the flow rate.

Extra oxygen is added to the flow from a storage tank as necessary, downstream of the flow sensor. The oxygen is then returned to the suit at the back of the head, where it flows down over the astronaut's face. By delivering oxygen to the helmet and drawing gas from the extremities, the suit is designed to ensure that the suit occupant breathes the freshest possible oxygen.

The operating pressure of the space suit is maintained at 4.3  psi (30  kPa ) (0.3 atm ~ one third of Earth atmospheric pressure) during extravehicular operations, and 0.7 psi (4.8 kPa) relative to external pressure while in intravehicular mode (i.e., inside the pressurized spacecraft).

Developing technologies

Technologies being considered for application in future PLSSs include pressure swing adsorption (PSA), a process by which CO2 can be separated from gas more efficiently, and through a repeatable process, as opposed to the current LiOH canisters, which become saturated with each use, and are limited to around eight hours. [4] By regenenerating the sorbent during EVA, the size and weight of the sorbent canister can be greatly reduced. PSA accomplishes this by venting CO2 and water vapor into space. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Carbon dioxide</span> Chemical compound with formula CO₂

Carbon dioxide is a chemical compound with the chemical formula CO2. It is made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature, and as the source of available carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate, which causes ocean acidification as atmospheric CO2 levels increase.

<span class="mw-page-title-main">Space suit</span> Garment worn to keep a human alive in the harsh environment of outer space

A space suit or spacesuit is a garment worn to keep a human alive in the harsh environment of outer space, vacuum and temperature extremes. Space suits are often worn inside spacecraft as a safety precaution in case of loss of cabin pressure, and are necessary for extravehicular activity (EVA), work done outside spacecraft. Space suits have been worn for such work in Earth orbit, on the surface of the Moon, and en route back to Earth from the Moon. Modern space suits augment the basic pressure garment with a complex system of equipment and environmental systems designed to keep the wearer comfortable, and to minimize the effort required to bend the limbs, resisting a soft pressure garment's natural tendency to stiffen against the vacuum. A self-contained oxygen supply and environmental control system is frequently employed to allow complete freedom of movement, independent of the spacecraft.

<span class="mw-page-title-main">Rebreather</span> Portable apparatus to recycle breathing gas

A rebreather is a breathing apparatus that absorbs the carbon dioxide of a user's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the user. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment. The purpose is to extend the breathing endurance of a limited gas supply, and, for covert military use by frogmen or observation of underwater life, eliminating the bubbles produced by an open circuit system and in turn not scaring wildlife being filmed. A rebreather is generally understood to be a portable unit carried by the user. The same technology on a vehicle or non-mobile installation is more likely to be referred to as a life-support system.

<span class="mw-page-title-main">Hypercapnia</span> Abnormally high tissue carbon dioxide levels

Hypercapnia (from the Greek hyper = "above" or "too much" and kapnos = "smoke"), also known as hypercarbia and CO2 retention, is a condition of abnormally elevated carbon dioxide (CO2) levels in the blood. Carbon dioxide is a gaseous product of the body's metabolism and is normally expelled through the lungs. Carbon dioxide may accumulate in any condition that causes hypoventilation, a reduction of alveolar ventilation (the clearance of air from the small sacs of the lung where gas exchange takes place) as well as resulting from inhalation of CO2. Inability of the lungs to clear carbon dioxide, or inhalation of elevated levels of CO2, leads to respiratory acidosis. Eventually the body compensates for the raised acidity by retaining alkali in the kidneys, a process known as "metabolic compensation".

<span class="mw-page-title-main">Soda lime</span> Chemical mixture for absorbing carbon dioxide

Soda lime, a mixture of sodium hydroxide (NaOH) and calcium oxide (CaO), is used in granular form within recirculating breathing environments like general anesthesia and its breathing circuit, submarines, rebreathers, and hyperbaric chambers and underwater habitats. Its purpose is to eliminate carbon dioxide from breathing gases, preventing carbon dioxide retention and, eventually, carbon dioxide poisoning. The creation of soda lime involves treating slaked lime with a concentrated sodium hydroxide solution.

<span class="mw-page-title-main">Extravehicular Mobility Unit</span> Series of semi-rigid two-piece space suit models from the United States

The Extravehicular Mobility Unit (EMU) is an independent anthropomorphic spacesuit that provides environmental protection, mobility, life support, and communications for astronauts performing extravehicular activity (EVA) in Earth orbit. Introduced in 1981, it is a two-piece semi-rigid suit, and is currently one of two types of EVA spacesuits used by crew members on the International Space Station (ISS), the other being the Russian Orlan space suit. It was used by NASA's Space Shuttle astronauts prior to the end of the Shuttle program in 2011.

<span class="mw-page-title-main">Life-support system</span> Technology that allows survival in hostile environments

A life-support system is the combination of equipment that allows survival in an environment or situation that would not support that life in its absence. It is generally applied to systems supporting human life in situations where the outside environment is hostile, such as outer space or underwater, or medical situations where the health of the person is compromised to the extent that the risk of death would be high without the function of the equipment.

<span class="mw-page-title-main">Sabatier reaction</span> Methanation process of carbon dioxide with hydrogen

The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures and pressures in the presence of a nickel catalyst. It was discovered by the French chemists Paul Sabatier and Jean-Baptiste Senderens in 1897. Optionally, ruthenium on alumina makes a more efficient catalyst. It is described by the following exothermic reaction:

<span class="mw-page-title-main">Apollo/Skylab spacesuit</span> Space suit used in Apollo and Skylab missions

The Apollo/Skylab space suit is a class of space suits used in Apollo and Skylab missions. The names for both the Apollo and Skylab space suits were Extravehicular Mobility Unit (EMU). The Apollo EMUs consisted of a Pressure Suit Assembly (PSA) aka "suit" and a Portable Life Support System (PLSS) that was more commonly called the "backpack". The A7L was the PSA model used on the Apollo 7 through 14 missions.

<span class="mw-page-title-main">Pressure swing adsorption</span> Method of gases separation using selective adsorption under pressure

Pressure swing adsorption (PSA) is a technique used to separate some gas species from a mixture of gases under pressure according to the species' molecular characteristics and affinity for an adsorbent material. It operates at near-ambient temperature and significantly differs from the cryogenic distillation commonly used to separate gases. Selective adsorbent materials are used as trapping material, preferentially adsorbing the target gas species at high pressure. The process then swings to low pressure to desorb the adsorbed gas.

<span class="mw-page-title-main">Terraforming of Mars</span> Hypothetical modification of Mars into a habitable planet

The terraforming of Mars or the terraformation of Mars is a hypothetical procedure that would consist of a planetary engineering project or concurrent projects aspiring to transform Mars from a planet hostile to terrestrial life to one that could sustainably host humans and other lifeforms free of protection or mediation. The process would involve the modification of the planet's extant climate, atmosphere, and surface through a variety of resource-intensive initiatives, as well as the installation of a novel ecological system or systems.

<span class="mw-page-title-main">Escape breathing apparatus</span> Self contained breathing apparatus providing gas to escape from a hazardous environment

Escape breathing apparatus, also called escape respirators, escape sets, self-rescuer masks, emergency life saving apparatus (ELSA), and emergency escape breathing devices (EEBD), are portable breathing apparatus that provide the wearer with respiratory protection for a limited period, intended for escape from or through an environment where there is no breathable ambient atmosphere. This includes escape through water and in areas containing harmful gases or fumes or other atmospheres immediately dangerous to life or health (IDLH).

<span class="mw-page-title-main">Orbiting Frog Otolith</span> NASA space program which sent frogs into orbit

The Orbiting Frog Otolith (OFO) was a NASA space program which sent two bullfrogs into orbit on 9 November 1970 for the study of weightlessness. The name, derived through common use, was a functional description of the biological experiment carried by the satellite. Otolith referred to the frog's inner ear balance mechanism.

<span class="mw-page-title-main">Liquid cooling and ventilation garment</span> Garment worn inside a spacesuit for cooling and ventilation

A liquid cooling garment (LCG) is a form-fitting garment that is used to remove body heat from the wearer in environments where evaporative cooling from sweating and open-air convection cooling does not work or is insufficient, or the wearer has a biological problem that hinders self-regulation of body temperature.

<span class="mw-page-title-main">Carbon dioxide scrubber</span> Device which absorbs carbon dioxide from circulated gas

A carbon dioxide scrubber is a piece of equipment that absorbs carbon dioxide (CO2). It is used to treat exhaust gases from industrial plants or from exhaled air in life support systems such as rebreathers or in spacecraft, submersible craft or airtight chambers. Carbon dioxide scrubbers are also used in controlled atmosphere (CA) storage. They have also been researched for carbon capture and storage as a means of combating climate change.

<span class="mw-page-title-main">Breathing performance of regulators</span> Measurement and requirements of function of breathing regulators

The breathing performance of regulators is a measure of the ability of a breathing gas regulator to meet the demands placed on it at varying ambient pressures and temperatures, and under varying breathing loads, for the range of breathing gases it may be expected to deliver. Performance is an important factor in design and selection of breathing regulators for any application, but particularly for underwater diving, as the range of ambient operating pressures and temperatures, and variety of breathing gases is broader in this application. A diving regulator is a device that reduces the high pressure in a diving cylinder or surface supply hose to the same pressure as the diver's surroundings. It is desirable that breathing from a regulator requires low effort even when supplying large amounts of breathing gas as this is commonly the limiting factor for underwater exertion, and can be critical during diving emergencies. It is also preferable that the gas is delivered smoothly without any sudden changes in resistance while inhaling or exhaling, and that the regulator does not lock up and either fail to supply gas or free-flow. Although these factors may be judged subjectively, it is convenient to have standards by which the many different types and manufactures of regulators may be objectively compared.

<span class="mw-page-title-main">ISS ECLSS</span> Life support system for the International Space Station

The International Space Station Environmental Control and Life Support System (ECLSS) is a life support system that provides or controls atmospheric pressure, fire detection and suppression, oxygen levels, waste management and water supply. The highest priority for the ECLSS is the ISS atmosphere, but the system also collects, processes, and stores both waste and water produced and used by the crew—a process that recycles fluid from the sink, shower, toilet, and condensation from the air.

<span class="mw-page-title-main">Z series space suits</span> Series of prototype space suit models

The Z series is a series of prototype extra-vehicular activity (EVA) space suits being developed in the Advanced Extravehicular Mobility Unit (AEMU) project under NASA's Advanced Exploration Systems (AES) program. The suits are being designed to be used for both micro-gravity and planetary EVAs.

<span class="mw-page-title-main">Mars suit</span>

A Mars suit or Mars space suit is a space suit for EVAs on the planet Mars. Compared to a suit designed for space-walking in the near vacuum of low Earth orbit, Mars suits have a greater focus on actual walking and a need for abrasion resistance. Mars' surface gravity is 37.8% of Earth's, approximately 2.3 times that of the Moon, so weight is a significant concern, but there are fewer thermal demands compared to open space. At the surface the suits would contend with the atmosphere of Mars, which has a pressure of about 0.6 to 1 kilopascal. On the surface, radiation exposure is a concern, especially solar flare events, which can dramatically increase the amount of radiation over a short time.

<span class="mw-page-title-main">Diving rebreather</span> Closed or semi-closed circuit scuba

A Diving rebreather is an underwater breathing apparatus that absorbs the carbon dioxide of a diver's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the diver. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment. The purpose is to extend the breathing endurance of a limited gas supply, and, for covert military use by frogmen or observation of underwater life, to eliminate the bubbles produced by an open circuit system. A diving rebreather is generally understood to be a portable unit carried by the user, and is therefore a type of self-contained underwater breathing apparatus (scuba). A semi-closed rebreather carried by the diver may also be known as a gas extender. The same technology on a submersible or surface installation is more likely to be referred to as a life-support system.

References

  1. 1 2 Jones, Eric M. (January 3, 2006). "PLSS Technical Information". Apollo Lunar Surface Journal. NASA. Retrieved 2006-11-03.
  2. "Primary Life Support Subsystem" (PDF). nasa.gov. Hamilton Sundstrand. Retrieved January 5, 2016. Archived 2014-10-03 at the Wayback Machine
  3. Wilford, John Noble (July 1969). We Reach the Moon . New York: Bantam Books. pp.  221–222.
  4. Alptekin, Gokhan (2005-08-01). "An Advanced Rapid Cycling CO2 and H2O Control System for PLSS". NASA . Retrieved 2007-02-24.
  5. Heather, Paul; Alptekin, Goekhan; Cates, Matthew; Bernal, Casey; Dubovik, Margarita; Gershanovich, Yevgenia (2007). "Development of a Rapid Cycling CO2 and H2O Removal Sorbent". 37th International Conference on Environmental Systems. Chicago: NASA . Retrieved 2007-02-24.