Clorotepine

Last updated
Clorotepine
Clorotepine.svg
Clinical data
Trade names Clotepin, Clopiben
Other namesOctoclothepin; Octoclothepine; VUFB-6281; VUFB-10030
Routes of
administration
By mouth
ATC code
  • None
Legal status
Legal status
  • In general: ℞ (Prescription only)
Identifiers
  • 1-(8-chloro-10,11-dihydrodibenzo[b,f]thiepin-10-yl)-4-methylpiperazine
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C19H21ClN2S
Molar mass 344.90 g·mol−1
3D model (JSmol)
  • Clc4cc2c(Sc1ccccc1CC2N3CCN(C)CC3)cc4
  • InChI=1S/C19H21ClN2S/c1-21-8-10-22(11-9-21)17-12-14-4-2-3-5-18(14)23-19-7-6-15(20)13-16(17)19/h2-7,13,17H,8-12H2,1H3
  • Key:XRYLGRGAWQSVQW-UHFFFAOYSA-N

Clorotepine (INN; brand names Clotepin, Clopiben), also known as octoclothepin or octoclothepine, is an antipsychotic of the tricyclic group which was derived from perathiepin in 1965 and marketed in the Czech Republic by Spofa in or around 1971 for the treatment of schizophrenic psychosis. [1] [2] [3] [4] [5] [6]

Contents

Clorotepine is known to have high affinity for the dopamine D1, [7] D2, [8] D3, [8] and D4 receptors, [8] the serotonin 5-HT2A, [7] 5-HT2B, [9] 5-HT2C, [9] 5-HT6, [10] and 5-HT7 receptors, [10] the α1A-, [11] α1B-, [11] and α1D-adrenergic receptors, [11] and the histamine H1 receptors, [12] where it has been it has been confirmed to act as an antagonist (or inverse agonist) at most sites (and likely is as such at all of them based on structure–activity relationships), and it also blocks the reuptake of norepinephrine via inhibition of the norepinephrine transporter. [13]

Due to its very potent activity at the D2 receptor, along with tefludazine, clorotepine was used as the basis for developing a 3-dimensional (3D) pharmacophore for D2 receptor antagonists. [14]

Synthesis

Synthesis: Clorotepine synthesis.svg
Synthesis:

The first step involves an Ullmann condensation between 2-iodophenylacetic acid [18698-96-9] (1) and 4-chlorothiophenol [106-54-7] (2) to give [13459-62-6] (3). Ring closure by heating in PPA gives 8-chlorodibenzo[b,f]thiepin-10(11H)-one [1469-28-9] (4). The modern method first forms the enamine in 99% yield. Reduction of this with NaBH4 in the presence of acid afforded clorotepine in 80% yield. The acid is needed to shift the stable enamine tautomer into the iminium salt quaternary cation, which is vulnerable to attack from the incoming hydride nucleophile. Thus, the classical method (i.e. ketone to ROH to leaving group) might not be needed anymore.

See also

Related Research Articles

<span class="mw-page-title-main">Amoxapine</span> Chemical compound

Amoxapine, sold under the brand name Asendin among others, is a tricyclic antidepressant (TCAs). It is the N-demethylated metabolite of loxapine. Amoxapine first received marketing approval in the United States in 1992.

Dopamine receptor D<sub>4</sub> Protein-coding gene in the species Homo sapiens

The dopamine receptor D4 is a dopamine D2-like G protein-coupled receptor encoded by the DRD4 gene on chromosome 11 at 11p15.5.

<span class="mw-page-title-main">Bifeprunox</span> Experimental dopamine D2 receptor partial agonist researched as an antipsychotic agent

Bifeprunox (INN) (code name DU-127,090) is an atypical antipsychotic which, similarly to aripiprazole, combines minimal D2 receptor agonism with serotonin receptor agonism. It was under development for the treatment of schizophrenia but has since been abandoned.

<span class="mw-page-title-main">Metitepine</span> Chemical compound

Metitepine, also known as methiothepin, is a drug described as a "psychotropic agent" of the tricyclic group which was never marketed. It acts as a non-selective antagonist of serotonin, dopamine, and adrenergic receptors and has antipsychotic properties.

Dopamine receptor D<sub>2</sub> Main receptor for most antipsychotic drugs

Dopamine receptor D2, also known as D2R, is a protein that, in humans, is encoded by the DRD2 gene. After work from Paul Greengard's lab had suggested that dopamine receptors were the site of action of antipsychotic drugs, several groups, including those of Solomon Snyder and Philip Seeman used a radiolabeled antipsychotic drug to identify what is now known as the dopamine D2 receptor. The dopamine D2 receptor is the main receptor for most antipsychotic drugs. The structure of DRD2 in complex with the atypical antipsychotic risperidone has been determined.

Dopamine receptor D<sub>1</sub> Protein-coding gene in the species Homo sapiens

Dopamine receptor D1, also known as DRD1. It is one of the two types of D1-like receptor family - receptors D1 and D5. It is a protein that in humans is encoded by the DRD1 gene.

5-HT<sub>1D</sub> receptor Serotonin receptor which affects locomotion and anxiety in humans

5-hydroxytryptamine (serotonin) receptor 1D, also known as HTR1D, is a 5-HT receptor, but also denotes the human gene encoding it. 5-HT1D acts on the central nervous system, and affects locomotion and anxiety. It also induces vasoconstriction in the brain.

Dopamine receptor D<sub>3</sub> Subtype of the dopamine receptor protein

Dopamine receptor D3 is a protein that in humans is encoded by the DRD3 gene.

5-HT<sub>7</sub> receptor Protein-coding gene in the species Homo sapiens

The 5-HT7 receptor is a member of the GPCR superfamily of cell surface receptors and is activated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) The 5-HT7 receptor is coupled to Gs (stimulates the production of the intracellular signaling molecule cAMP) and is expressed in a variety of human tissues, particularly in the brain, the gastrointestinal tract, and in various blood vessels. This receptor has been a drug development target for the treatment of several clinical disorders. The 5-HT7 receptor is encoded by the HTR7 gene, which in humans is transcribed into 3 different splice variants.

<span class="mw-page-title-main">Cyamemazine</span> Antipsychotic medication

Cyamemazine (Tercian), also known as cyamepromazine, is a typical antipsychotic drug of the phenothiazine class which was introduced by Theraplix in France in 1972 and later in Portugal as well.

<span class="mw-page-title-main">Fananserin</span> Chemical compound

Fananserin (RP-62203) is a drug which acts as a potent antagonist at both the 5HT2A receptor, and the Dopamine D4 receptor, but without blocking other dopamine receptors such as D2. It has sedative and antipsychotic effects, and has been researched for the treatment of schizophrenia, although efficacy was less than expected and results were disappointing.

<span class="mw-page-title-main">6-Br-APB</span> Chemical compound

6-Br-APB is a synthetic compound that acts as a selective D1 agonist, with the (R)-enantiomer being a potent full agonist, while the (S) enantiomer retains its D1 selectivity but is a weak partial agonist. (R)-6-Br-APB and similar D1-selective full agonists like SKF-81,297 and SKF-82,958 produce characteristic anorectic effects, stereotyped behaviour and self-administration in animals, with a similar but not identical profile to that of dopaminergic stimulants such as amphetamine.

<span class="mw-page-title-main">AS-8112</span> Chemical compound

AS-8112 is a synthetic compound that acts as a selective antagonist at the dopamine receptor subtypes D2 and D3, and the serotonin receptor 5-HT3. It has potent antiemetic effects in animal studies and has been investigated for potential medical use.

<span class="mw-page-title-main">UB-165</span> Pharmaceutical drug

UB-165 is a drug which acts as an agonist at neuronal nicotinic acetylcholine receptors being a full agonist of the α3β2 isoform and a partial agonist of the α4β2* isoform. It is used to study the role of this receptor subtype in the release of dopamine and noradrenaline in the brain, and has also been used as a lead compound to derive a number of other selective nicotinic receptor ligands.

<span class="mw-page-title-main">Tiospirone</span> Pharmaceutical drug

Tiospirone (BMY-13,859), also sometimes called tiaspirone or tiosperone, is an atypical antipsychotic of the azapirone class. It was investigated as a treatment for schizophrenia in the late 1980s and was found to have an effectiveness equivalent to those of typical antipsychotics in clinical trials but without causing extrapyramidal side effects. However, development was halted and it was not marketed. Perospirone, another azapirone derivative with antipsychotic properties, was synthesized and assayed several years after tiospirone. It was found to be both more potent and more selective in comparison and was commercialized instead.

<span class="mw-page-title-main">Roxindole</span> Dopaminergic & serotonergic drug developed for schizophrenia treatment

Roxindole (EMD-49,980) is a dopaminergic and serotonergic drug which was originally developed by Merck KGaA for the treatment of schizophrenia. In clinical trials its antipsychotic efficacy was only modest but it was unexpectedly found to produce potent and rapid antidepressant and anxiolytic effects. As a result, roxindole was further researched for the treatment of depression instead. It has also been investigated as a therapy for Parkinson's disease and prolactinoma.

<span class="mw-page-title-main">7,N,N-TMT</span> Chemical compound

7,N,N-trimethyltryptamine (7-methyl-DMT, 7-TMT), is a tryptamine derivative which acts as an agonist of 5-HT2 receptors. In animal tests, both 7-TMT and its 5-methoxy derivative 5-MeO-7-TMT produced behavioural responses similar to those of psychedelic drugs such as DMT, but the larger 7-ethyl and 7-bromo derivatives of DMT did not produce psychedelic responses despite having higher 5-HT2 receptor affinity in vitro (cf. DOBU, DOAM). 7-TMT also weakly inhibits reuptake of serotonin but with little effect on dopamine or noradrenaline reuptake.

<span class="mw-page-title-main">SB-206553</span> Chemical compound

SB-206553 is a drug which acts as a mixed antagonist for the 5-HT2B and 5-HT2C serotonin receptors. It has anxiolytic properties in animal studies and interacts with a range of other drugs. It has also been shown to act as a positive allosteric modulator of α7 nicotinic acetylcholine receptors. Modified derivatives of SB-206553 have been used to probe the structure of the 5-HT2B receptor.

<span class="mw-page-title-main">Substituted tryptamine</span> Class of indoles

Substituted tryptamines, or serotonin analogues, are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

<span class="mw-page-title-main">Mazapertine</span> Chemical compound

Mazapertine (RWJ-37796) is an antipsychotic agent that was developed by Johnson & Johnson but never marketed. It exerts its pharmacological effect through affinity for dopamine D2, serotonin 5-HT1A, and α1-adrenergic receptors.

References

  1. Index nominum 2000: international drug directory. Taylor & Francis US. 2000. p. 265. ISBN   978-3-88763-075-1 . Retrieved 26 November 2011.
  2. Ganellin CR, Triggle DJ, Macdonald F (1997). Dictionary of pharmacological agents. CRC Press. p. 500. ISBN   978-0-412-46630-4 . Retrieved 26 November 2011.
  3. Metysová J, Metys J, Dlabac A, Kazdová E, Valchár M (1980). "Pharmacological properties of a potent neuroleptic drug octoclothepin". Acta Biologica et Medica Germanica. 39 (6): 723–40. PMID   6893891.
  4. Cain CK (1 January 1971). Annual Reports in Medicinal Chemistry. Academic Press. p. 5. ISBN   978-0-12-040506-0 . Retrieved 26 November 2011.
  5. Protiva M (2010). "ChemInform Abstract: Fifty Years in Chemical Drug Research". ChemInform. 23 (9): no. doi:10.1002/chin.199209338. ISSN   0931-7597.
  6. Melich H (1971). "[Clotepin]". Cas. Lek. Cesk. (in Czech). 110 (17): 404–5. PMID   5576292.
  7. 1 2 Campiani G, Butini S, Gemma S, et al. (January 2002). "Pyrrolo[1,3]benzothiazepine-based atypical antipsychotic agents. Synthesis, structure-activity relationship, molecular modeling, and biological studies". Journal of Medicinal Chemistry. 45 (2): 344–59. doi:10.1021/jm010982y. PMID   11784139.
  8. 1 2 3 Burstein ES, Ma J, Wong S, et al. (December 2005). "Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist". The Journal of Pharmacology and Experimental Therapeutics. 315 (3): 1278–87. doi:10.1124/jpet.105.092155. PMID   16135699. S2CID   2247093.
  9. 1 2 Bøgesø KP, Liljefors T, Arnt J, Hyttel J, Pedersen H (July 1991). "Octoclothepin enantiomers. A reinvestigation of their biochemical and pharmacological activity in relation to a new receptor-interaction model for dopamine D-2 receptor antagonists". Journal of Medicinal Chemistry. 34 (7): 2023–30. doi:10.1021/jm00111a015. PMID   1676758.
  10. 1 2 Roth BL, Craigo SC, Choudhary MS, et al. (March 1994). "Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors". The Journal of Pharmacology and Experimental Therapeutics. 268 (3): 1403–10. PMID   7908055.
  11. 1 2 3 Kristensen JL, Püschl A, Jensen M, et al. (October 2010). "Exploring the neuroleptic substituent in octoclothepin: potential ligands for positron emission tomography with subnanomolar affinity for α(1)-adrenoceptors". Journal of Medicinal Chemistry. 53 (19): 7021–34. doi:10.1021/jm100652h. PMID   20857909.
  12. Lim HD, van Rijn RM, Ling P, Bakker RA, Thurmond RL, Leurs R (September 2005). "Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist". The Journal of Pharmacology and Experimental Therapeutics. 314 (3): 1310–21. doi:10.1124/jpet.105.087965. PMID   15947036. S2CID   24248896.
  13. Liljefors T, Bøgesø KP (February 1988). "Conformational analysis and structural comparisons of (1R,3S)-(+)- and (1S,3R)-(−)-tefludazine, (S)-(+)- and (R)-(−)-octoclothepin, and (+)-dexclamol in relation to dopamine receptor antagonism and amine-uptake inhibition". Journal of Medicinal Chemistry. 31 (2): 306–12. doi:10.1021/jm00397a006. PMID   2892932.
  14. Krogsgaard-Larsen P, Liljefors T, Madsen U (25 July 2002). Textbook of drug design and discovery. CRC Press. p. 108. ISBN   978-0-415-28288-8 . Retrieved 26 November 2011.
  15. Protiva M, Jílek JO, Metysová J, et al. Neurotropic and psychotropic agents. 8. 10-(4-Methylpiperazion)-10,11-dihydrodibenzo(b,f)thiepine and analogs; a new group of potent neuroleptics. (Preliminary communication). Farmaco Sci. 1965;20(10):721-5. PMID: 5882350.
  16. Jílek, Jiří O.; Pomykáček, Josef; Metyšová, Jiřina; Bartošová, Marie; Protiva, Miroslav (1978). "Potential metabolites of the neuroleptic agent octoclothepin; Synthesis and pharmacology of 8-chloro-6-hydroxy-10-(4-methylpiperazino)-10,11-dihydrodibenzo[b,f]thiepin and some related compounds". Collection of Czechoslovak Chemical Communications. 43 (7): 1747–1759. doi:10.1135/cccc19781747.
  17. Jílek, Jiří; Pomykáček, Josef; Prošek, Zdeněk; Holubek, Jiří; Svátek, Emil; Metyšová, Jiřina; Dlabač, Antonín; Protiva, Miroslav (1983). "8-Chloro and 8-methylthio derivatives of 10-piperazino-10,11-dihydrodibenzo[b,f]thiepins; New compounds and new procedures". Collection of Czechoslovak Chemical Communications. 48 (3): 906–927. doi:10.1135/cccc19830906.