Deinococcus

Last updated

Contents

Deinococcus
Deinococcus radiodurans.jpg
A tetrad of D. radiodurans
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Deinococcota
Class: Deinococci
Order: Deinococcales
Family: Deinococcaceae
Brooks and Murray 1981
Genus: Deinococcus
Rainey et al. 1997
Type species
Deinococcus radiodurans
Raj et al. 1960 ex Brooks and Murray 1981
Species

See text.

Synonyms
  • DeinobacterOyaizu et al. 1987

Deinococcus (from the Greek : δεινός, deinos, "dreadful, strange" and κόκκος, kókkos, "granule" [1] ) is in the monotypic family Deinococcaceae, and one genus [2] of three in the order Deinococcales [3] [4] of the bacterial phylum Deinococcota highly resistant to environmental hazards. These bacteria have thick cell walls that give them Gram-positive stains, but they include a second membrane and so are closer in structure to Gram-negative bacteria. Deinococcus survive when their DNA is exposed to high doses of gamma and UV radiation. Whereas other bacteria change their structure in the presence of radiation, such as by forming endospores, Deinococcus tolerate it without changing their cellular form and do not retreat into a hardened structure. They are also characterized by the presence of the carotenoid pigment deinoxanthin that give them their pink color. They are usually isolated according to these two criteria. In August 2020, scientists reported that bacteria from Earth, particularly Deinococcus bacteria, were found to survive for three years in outer space, based on studies conducted on the International Space Station. These findings support the notion of panspermia, the hypothesis that life exists throughout the Universe, distributed in various ways, including space dust, meteoroids, asteroids, comets, planetoids or contaminated spacecraft. [5] [6]

Molecular signatures

Members of Deinococcus can be distinguished from all other bacteria through molecular signatures known as conserved signature indels (CSIs) and proteins (CSPs). An earlier study on Deinococcus identified nine CSIs and 58 CSPs which were exclusively shared by members of this genus. [7] Some of the identified CSPs such as the DNA damage repair protein PprA and the single-stranded DNA-binding protein DdrB are thought to have functional roles in the DNA repair mechanism and radioresistance phenotype of Deinococcus. [7]

In a more recent work focused on DNA repair proteins an additional 22 CSIs were identified as specific to this genus, including a 30 amino acid insert in the UvrA1 protein that is suggested to play in a role in the resistance ability of Deinococcus species against radiation and oxidation damage. [8]

The uvrA1 gene in Deinococcus was found to form a novel genetic linkage with the genes of the proteins dCSP-1 (a transmembrane protein found only in Deinococcus species), DsbA and DsbB. The latter two proteins play a central role in the formation of disulfide bonds in proteins via oxidation-reduction of cysteine rich motifs (CXXC). [9] The above cluster of genes forms a novel operon unique to Deinococcus species and the encoded proteins are predicted to function together to combat against DNA damage caused by reactive oxidative species from radiation. [8]

The 30 aa CSI present in UvrA1 and another 5-7 aa CSI present in DsbA are located on surface loops of the proteins. The surface exposed loops/patches formed by these CSIs are thought to mediate protein-protein interactions with the transmembrane protein dCSP-1, thus facilitating a sequence of electron transfers that ultimately ameliorates oxidative damage. [8]

Comparative genomics

Orthologous gene comparison between three sequenced Deinococcus strains. The numbers correspond to the number of shared orthologs between two or all three species. Deinococcus genomes compared.png
Orthologous gene comparison between three sequenced Deinococcus strains. The numbers correspond to the number of shared orthologs between two or all three species.

Although all species of the genus Deinococcus are related by definition, they exhibit substantial differences across their genomes. Most species appear to have about 3,000 genes, but only a fraction of them are shared in other species. For example, a 3-species comparison among D. radiodurans , D. deserti , and D. geothermalis shows that about two thirds of each genome is shared by all three species, but close to a third is specific and only found in one of the species (see figure). Once more genomes are included in such comparisons, the core genome will almost certainly be much smaller. [10]

Taxonomy

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [11] and National Center for Biotechnology Information (NCBI). [12] As of August 2011, there were 47 species of Deinococcus described

Phylogeny

16S rRNA based LTP_08_2023 [13] [14] [15] 120 marker proteins based GTDB 08-RS214 [16] [17] [18]
Deinococcus

D. peraridilitorisRainey et al. 2007 [19]

D. cellulosilyticusWeon et al. 2007 [20]

D. lacusPark et al. 2018

D. radiophilus(ex Lewis 1973) Books and Murray 1981 [21]

D. piscisShashidhar and Bandekar 2009 [22]

D. proteolyticusBrooks and Murray 1981 [23]

D. maricopensisRainey and da Costa 2005 [24]

D. misasensisAsker et al. 2008 [25]

D. roseusAsker et al. 2008 [25]

D. pimensisRainey and da Costa 2005 [24]

D. papagonensisRainey and da Costa 2005 [24]

D. yavapaiensisRainey and da Costa 2005 [24]

D. ruberKim et al. 2017 [26]

D. aquiradiocolaAsker et al. 2009 [27]

D. radiomollisCallegan et al. 2008 [28]

D. altitudinisCallegan et al. 2008 [28]

D. claudionisCallegan et al. 2008 [28]

D. sonorensisRainey and da Costa 2005 [24]

D. persicinusJeon et al. 2016 [26]

D. irradiatisoliKim et al. 2018

D. alpinitundraeCallegan et al. 2008 [28]

D. detaillensisZhang et al. 2021

D. psychrotoleransTian et al. 2019

D. murrayi Ferreira et al. 1997 [29]

D. terrestrisWang et al. 2020

D. carriKim et al. 2015 [26]

D. budaensisMakk et al. 2016 [26]

D. phoenicisVaishampayan, Venkateswaran & Schwendner 2014

D. geothermalis Ferreira et al. 1997 [29]

D. aluminiiKim et al. 2018

D. metallilatusKim et al. 2015

"D. aestuarii" Yin et al. 2022

D. aetheriusYang et al. 2010 [30]

D. aerius Yang et al. 2009 [31]

D. apachensis Rainey and da Costa 2005 [24]

D. terrigenaTen et al. 2019

D. enclensisThorat et al. 2015

D. ficus Lai et al. 2006 emend. Kämpfer 2009 [32]

D. radiodurans (ex Raj et al. 1960) Brooks and Murray 1981 [33]

D. wulumuqiensisWang et al. 2010 [34]

D. xinjiangensisPeng et al. 2009 [35]

D. antarcticusDong et al. 2015 [26]

D. cavernaeZhu et al. 2022

D. fonticolaMakk et al. 2019

D. reticulitermitisChen et al. 2012 [36]

D. petroleariusXi et al. 2019

D. citriAhmed et al. 2014 [26]

D. gobiensisYuan et al. 2009 [37]

D. metalliFeng et al. 2015

D. aquatilisKämpfer et al. 2008 [38]

D. puniceusLee et al. 2014 [26]

D. radioresistensSrinivasan et al. 2016

D. rufusWang et al. 2018

D. yunweiensisZhang et al. 2007 [39]

D. koreensisBaek et al. 2018

D. hopiensisRainey and da Costa 2005 [24]

D. aerolatusYoo et al. 2010 [40]

D. aerophilusYoo et al. 2010 [40]

D. humiSrinivasan et al. 2012

D. swuensisLee et al. 2015

D. radiopugnansBrooks and Murray 1981 [41]

D. marmoris Hirsch et al. 2006 [42]

D. saxicola Hirsch et al. 2006 [42]

D. frigens Hirsch et al. 2006 [42]

D. taklimakanensisLiu et al. 2017

D. arcticusWang et al. 2019

"D. aquaedulcis" Yin et al. 2022

D. multiflagellatusKim et al. 2018

D. arborisBae et al. 2022

D. betulaeBae et al. 2022

D. hohokamensisRainey and da Costa 2005 [24]

D. navajonensisRainey and da Costa 2005 [24]

D. deserti de Groot et al. 2005 [43]

D. malanensisZhu et al. 2017

D. indicus Suresh et al. 2004 [44]

D. caeniIm et al. 2008 [45]

D. depolymeransAsker et al. 2011 [46]

D. aquaticusIm et al. 2008 [45]

D. knuensisLee et al. 2017

D. seoulensisLee et al. 2016 [26]

D. radiotoleransCha et al. 2015

D. grandis(Oyaizu et al. 1987) Rainey et al. 1997 [47] [48]

D. daejeonensisSrinivasan et al. 2012 [49]

D. sedimentiLee et al. 2017 [26]

D. hibisciMoya et al. 2018

D. saudiensisHussain et al. 2016 [26]

D. soliCha et al. 2016 non Zhang et al. 2011 [26]

D. kurensisAkita et al. 2021 [26]

D. actinosclerusJoo et al. 2016 [26]

D. arenaeLee et al. 2016 [26]

Deinococcaceae

Deinobacterium chartae

Deinococcus

Deinococcus misasensis

Deinococcus cellulosilyticus

Deinococcus roseus

speciesgroup 2
Deinococcus

D. peraridilitoris

D. pimensis

D. yavapaiensis

D. maricopensis

D. irradiatisoli

D. alpinitundrae

D. alpinitundrae

D. psychrotolerans

D. ruber

D. aquiradiocola

D. altitudinis

D. claudionis

D. radiophilus

D. piscis

D. proteolyticus

D. hopiensis

D. phoenicis

D. geothermalis

D. metallilatus

D. budaensis

D. murrayi

D. terrestris

"D. aestuarii"

"D. planocerae" Lin et al. 2017

D. aquatilis

D. puniceus

D. ficus

D. deserti

D. malanensis

D. gobiensis

D. fonticola [incl. D. cavernae]

D. reticulitermitis

D. radiodurans

D. wulumuqiensis

D. metalli

D. koreensis

D. aerophilus

D. aerolatus

D. humi

D. radiopugnans

D. indicus

D. seoulensis [incl. D. knuensis]

D. arcticus

"D. aquaedulcis"

D. multiflagellatus

D. radiotolerans

D. actinosclerus [incl. D. arenae; D. kurensis]

D. soli [incl. D. saudiensis]

D. grandis [incl. D. daejeonensis; "D. xianganensis" Zheng et al. 2014]

D. sedimenti

Species incertae sedis:

  • "D. aquivivus" Kaempferet al. 2008
  • "D. gammatolerans" Srinivasan, Kang & Kim 2017
  • "D. guangxiensis" Sun et al. 2009
  • D. hibisciMoya et al. 2018
  • "D. koreense" Kim, Kang & Srinivasan 2017
  • D. papagonensisRainey & da Costa 2005
  • "D. populi" Li, Kudo & Tonouchi 2018
  • "D. sahariens" Bouraoui et al. 2012
  • "D. soli" Zhang et al. 2011 non Cha et al. 2016
  • "D. taeanensis" Lee et al. 2022
  • D. xibeiensisWang et al. 2010 [34]

See also

Related Research Articles

The Aquificota phylum is a diverse collection of bacteria that live in harsh environmental settings. The name Aquificota was given to this phylum based on an early genus identified within this group, Aquifex, which is able to produce water by oxidizing hydrogen. They have been found in springs, pools, and oceans. They are autotrophs, and are the primary carbon fixers in their environments. These bacteria are Gram-negative, non-spore-forming rods. They are true bacteria as opposed to the other inhabitants of extreme environments, the Archaea.

<span class="mw-page-title-main">Deinococcota</span> Phylum of Gram-negative bacteria

Deinococcota is a phylum of bacteria with a single class, Deinococci, that are highly resistant to environmental hazards, also known as extremophiles. These bacteria have thick cell walls that give them gram-positive stains, but they include a second membrane and so are closer in structure to those of gram-negative bacteria.

<i>Thermus</i> Genus of bacteria

Thermus is a genus of thermophilic bacteria. It is one of several bacteria belonging to the Deinococcota phylum. Thermus species can be distinguished from other genera in the family Thermaceae as well as all other bacteria by the presence of eight conserved signature indels (CSIs) found in proteins such as adenylate kinase and replicative DNA helicase as well as 14 conserved signature proteins (CSPs) that are exclusively shared by members of this genus.

<span class="mw-page-title-main">Halomonadaceae</span> Family of bacteria

Halomonadaceae is a family of halophilic Pseudomonadota.

Rubrobacter is a genus of Actinomycetota. It is radiotolerant and may rival Deinococcus radiodurans in this regard.

<i>Arcanobacterium</i> Genus of bacteria

Arcanobacterium is a genus of bacteria. They are gram-positive, non–acid fast, nonmotile, facultatively anaerobic, and non–endospore forming. They are widely distributed in nature in the microbiota of animals and are mostly innocuous. Some can cause disease in humans and other animals. As with various species of a microbiota, they usually are not pathogenic but can occasionally opportunistically capitalize on atypical access to tissues or weakened host defenses.

<i>Deinococcus radiodurans</i> Radioresistant extremophile species of bacterium

Deinococcus radiodurans is a bacterium, an extremophile and one of the most radiation-resistant organisms known. It can survive cold, dehydration, vacuum, and acid, and therefore is known as a polyextremophile. The Guinness Book Of World Records listed it as the world's toughest known bacterium.

Dehalococcoidia is a class of Chloroflexota, a phylum of Bacteria. It is also known as the DHC group.

Polynucleobacter is a genus of bacteria, originally established by Heckmann and Schmidt (1987) to exclusively harbor obligate endosymbionts of ciliates belonging to the genus Euplotes.

Tepidimonas ignava is a gram-negative, slightly thermophilic, motile bacterium with a single polar flagellum from the genus Tepidimonas, which was isolated from the hot spring at São Pedro do Sul in central Portugal.

Exiguobacterium is a genus of bacilli and a member of the low GC phyla of Bacillota. Collins et al. first described the genus Exiguobacterium with the characterization of E. aurantiacum strain DSM6208T from an alkaline potato processing plant. It has been found in areas covering a wide range of temperatures (-12 °C—55 °C) including glaciers in Greenland and hot springs in Yellowstone, and has been isolated from ancient permafrost in Siberia. This ability to survive in varying temperature extremes makes them an important area of study. Some strains in addition to dynamic thermal adaption are also halotolerant, can grow within a wide range of pH values (5-11), tolerate high levels of UV radiation, and heavy metal stress.

Deinococcus ficus strain CC-FR2-10T is a recently discovered gram-positive bacteria which plays a role in the production of nitrogen fertilizer. It was originally isolated from a Ficus plant, hence its name.

Dehalogenimonas lykanthroporepellens is an anaerobic, Gram-negative bacteria in the phylum Chloroflexota isolated from a Superfund site in Baton Rouge, Louisiana. It is useful in bioremediation for its ability to reductively dehalogenate chlorinated alkanes.

Deinococcus frigens is a species of low temperature and drought-tolerating, UV-resistant bacteria from Antarctica. It is Gram-positive, non-motile and coccoid-shaped. Its type strain is AA-692. Individual Deinococcus frigens range in size from 0.9-2.0 μm and colonies appear orange or pink in color. Liquid-grown cells viewed using phase-contrast light microscopy and transmission electron microscopy on agar-coated slides show that isolated D. frigens appear to produce buds. Comparison of the genomes of Deiococcus radiodurans and D. frigens have predicted that no flagellar assembly exists in D. frigens.

Deinococcus deserti is a Gram-negative, rod-shaped bacterium that belongs to the Deinococcaceae, a group of extremely radiotolerant bacteria. D. deserti and other Deinococcaceae exhibit an extraordinary ability to withstand ionizing radiation.

Dyadobacter is a genus of gram negative rod-shaped bacteria belonging to the family Spirosomaceae in the phylum Bacteroidota. Typical traits of the genus include yellow colony colour, positive flexirubin test and non-motile behaviours. They possess an anaerobic metabolism, can utilise a broad range of carbon sources, and test positive for peroxide catalase activity. The type species is Dyadobacter fermentans, which was isolated from surface sterilised maize leaves,.

Rhodoluna is a Gram-positive, non-spore-forming and non-motile genus of bacteria from the family of Microbacteriaceae. The type strain of the only species Rhodoluna lacicola encodes an actinorhodopsin, which is a light-diven proton pump enabling light energy conversion, potentially resulting in a mixotrophic physiology. The type strain of R. lacicola was isolated from Lake Tai in China. The type strain MWH-Ta8 is remarkable for its very small cell size ultramicrobacterium and its small genome size of only 1.4 Mbp. The type strain has a planktonic lifestyle, that is freely floating the water column of aquatic systems. Currently, the genus Rhodoluna contains two described species.

The Temperatibacteraceae are a family of bacteria.

Schleiferiaceae is a family of bacteria in the order Flavobacteriales.

Holophagae is a class of Acidobacteriota.

References

  1. Deinococcus in LPSN ; Parte, Aidan C.; Sardà Carbasse, Joaquim; Meier-Kolthoff, Jan P.; Reimer, Lorenz C.; Göker, Markus (1 November 2020). "List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ". International Journal of Systematic and Evolutionary Microbiology. 70 (11): 5607–5612. doi: 10.1099/ijsem.0.004332 .
  2. Brooks BW, Murray RGE (1981) Nomenclature for" Micrococcus radiodurans" and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. International Journal of Systematic and Evolutionary Microbiology 31: 353.
  3. Ekman JV, Raulio M, Busse HJ, Fewer DP, Salkinoja-Salonen M (2010) Deinobacterium chartae gen. nov., sp. nov., an extremely radiation resistant biofilm-forming bacterium isolated from a Finnish paper mill. International Journal of Systematic and Evolutionary Microbiology.
  4. Albuquerque L, Sims C, Nobre MF, Pino NM, Battista JR, et al. (2005) Truepera radiovictrix gen. nov., sp. nov., a new radiation-resistant species and the proposal of Trueperaceae fam. nov. FEMS Microbiology Letters 247: 161-169.
  5. Strickland, Ashley (26 August 2020). "Bacteria from Earth can survive in space and could endure the trip to Mars, according to new study". CNN News . Retrieved 26 August 2020.
  6. Kawaguchi, Yuko; et al. (26 August 2020). "DNA Damage and Survival Time Course of Deinococcal Cell Pellets During 3 Years of Exposure to Outer Space". Frontiers in Microbiology . 11: 2050. doi: 10.3389/fmicb.2020.02050 . PMC   7479814 . PMID   32983036.
  7. 1 2 Ho, Jonathan; Adeolu, Mobolaji; Khadka, Bijendra; Gupta, Radhey S. (October 2016). "Identification of distinctive molecular traits that are characteristic of the phylum "Deinococcus–Thermus" and distinguish its main constituent groups". Systematic and Applied Microbiology. 39 (7): 453–463. doi:10.1016/j.syapm.2016.07.003. ISSN   0723-2020. PMID   27506333.
  8. 1 2 3 Hassan, F. M. Nazmul; Gupta, Radhey S. (2018-03-08). "Novel Sequence Features of DNA Repair Genes/Proteins from Deinococcus Species Implicated in Protection from Oxidatively Generated Damage". Genes. 9 (3): 149. doi: 10.3390/genes9030149 . ISSN   2073-4425. PMC   5867870 . PMID   29518000.
  9. Inaba, Kenji; Ito, Koreaki (April 2008). "Structure and mechanisms of the DsbB–DsbA disulfide bond generation machine". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1783 (4): 520–529. doi: 10.1016/j.bbamcr.2007.11.006 . ISSN   0167-4889. PMID   18082634.
  10. 1 2 Groot, Arjan de; Dulermo, Rémi; Ortet, Philippe; Blanchard, Laurence; Guérin, Philippe; Fernandez, Bernard; Vacherie, Benoit; Dossat, Carole; Jolivet, Edmond; Siguier, Patricia; Chandler, Michael; Barakat, Mohamed; Dedieu, Alain; Barbe, Valérie; Heulin, Thierry (2009-03-27). "Alliance of Proteomics and Genomics to Unravel the Specificities of Sahara Bacterium Deinococcus deserti". PLOS Genetics. 5 (3): e1000434. doi: 10.1371/journal.pgen.1000434 . ISSN   1553-7404. PMC   2669436 . PMID   19370165.
  11. J.P. Euzéby. "Deinococcus". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2022-07-20.
  12. Sayers; et al. "DeinococcusThermus". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2022-07-20.
  13. "The LTP" . Retrieved 20 November 2023.
  14. "LTP_all tree in newick format" . Retrieved 20 November 2023.
  15. "LTP_08_2023 Release Notes" (PDF). Retrieved 20 November 2023.
  16. "GTDB release 08-RS214". Genome Taxonomy Database . Retrieved 10 May 2023.
  17. "bac120_r214.sp_label". Genome Taxonomy Database . Retrieved 10 May 2023.
  18. "Taxon History". Genome Taxonomy Database . Retrieved 10 May 2023.
  19. Rainey FA, Ferreira M, Nobre MF, Ray K, Bagaley D, Earl AM, Battista JR, Gómez-Silva B, McKay CP, da Costa MS. Deinococcus peraridilitoris sp. nov., isolated from a coastal desert. Int J Syst Evol Microbiol. 2007 Jul;57(Pt 7):1408-12.
  20. Weon HY, Kim BY, Schumann P, Son JA, Jang J, Go SJ, Kwon SW. Deinococcus cellulosilyticus sp. nov., isolated from air. Int J Syst Evol Microbiol. 2007 Aug;57(Pt 8):1685-8.
  21. Lewis NF. Radio-resistant Micrococcus radiophilus sp. nov. isolated from irradiated Bombay duck (Harpodon nehereus). Curr. Sci. (India)1976, v. 42, no. 14, p. 504
  22. Shashidhar R, Bandekar JR. Deinococcus piscis sp. nov., a radiation-resistant bacterium isolated from a marine fish. Int J Syst Evol Microbiol. 2009 Nov;59(Pt 11):2714-7
  23. Kobatake, M., Tanabe, S., Hasegawa, S. Nouveau micrococcus radioresistant a pigment rouge, isole de feces de Lama glama, et son utilisation comme indicateur microbiologique de la radiosterilisation. C.R. Seances Soc. Biol. Fil. (1973)167, 1506–1510.
  24. 1 2 3 4 5 6 7 8 9 Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kämpfer P, da Costa MS. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol. 2005 Sep;71(9):5225-35. Erratum in: Appl Environ Microbiol. 2005 Nov;71(11):7630.
  25. 1 2 Asker D, Awad TS, Beppu T, Ueda K. Deinococcus misasensis and Deinococcus roseus, novel members of the genus Deinococcus, isolated from a radioactive site in Japan. Syst Appl Microbiol. 2008 Mar;31(1):43-9.
  26. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Parte, A.C. "Deinococcus". LPSN .
  27. Asker D, Awad TS, Beppu T, Ueda K. Deinococcus aquiradiocola sp. nov., isolated from a radioactive site in Japan. Int J Syst Evol Microbiol. 2009 Jan;59(Pt 1):144-9.
  28. 1 2 3 4 Callegan RP, Nobre MF, McTernan PM, Battista JR, Navarro-González R, McKay CP, da Costa MS, Rainey FA. Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol. 2008 May;58(Pt 5):1252-8.
  29. 1 2 Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J, Chung AP, da Costa MS. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol. 1997 Oct;47(4):939-47.
  30. Yang Y, Itoh T, Yokobori S, Shimada H, Itahashi S, Satoh K, Ohba H, Narumi I, Yamagishi A. Deinococcus aetherius sp. nov., isolated from the stratosphere. Int J Syst Evol Microbiol. 2010 Apr;60(Pt 4):776-9
  31. Yang Y, Itoh T, Yokobori S, Itahashi S, Shimada H, Satoh K, Ohba H, Narumi I, Yamagishi A. Deinococcus aerius sp. nov., isolated from the high atmosphere. Int J Syst Evol Microbiol. 2009 Aug;59(Pt 8):1862-6.
  32. Lai WA, Kämpfer P, Arun AB, Shen FT, Huber B, Rekha PD, Young CC. Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol. 2006 Apr;56(Pt 4):787-91
  33. Anderson, A W; H C Nordan, R F Cain, G Parrish, D Duggan (1956). "Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation". Food Technol. 10 (1): 575–577.
  34. 1 2 Wang W, Mao J, Zhang Z, Tang Q, Xie Y, Zhu J, Zhang L, Liu Z, Shi Y, Goodfellow M. Deinococcus wulumuqiensis sp. nov., and Deinococcus xibeiensis sp. nov., isolated from radiation-polluted soil. Int J Syst Evol Microbiol. 2010 Sep;60(Pt 9):2006-10
  35. Peng F, Zhang L, Luo X, Dai J, An H, Tang Y, Fang C. Deinococcus xinjiangensis sp. nov., isolated from desert soil. Int J Syst Evol Microbiol. 2009 Apr;59(Pt 4):709-13.
  36. Chen W, Wang B, Hong H, Yang H, Liu SJ. Deinococcus reticulitermitis sp. nov., isolated from a termite gut.Int J Syst Evol Microbiol. 2011 Feb 18
  37. Yuan M, Zhang W, Dai S, Wu J, Wang Y, Tao T, Chen M, Lin M. Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. Int J Syst Evol Microbiol. 2009 Jun;59(Pt 6):1513-7
  38. Kämpfer P, Lodders N, Huber B, Falsen E, Busse HJ. Deinococcus aquatilis sp. nov., isolated from water. Int J Syst Evol Microbiol. 2008 Dec;58(Pt 12):2803-6.
  39. Zhang YQ, Sun CH, Li WJ, Yu LY, Zhou JQ, Zhang YQ, Xu LH, Jiang CL. Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol. 2007 Feb;57(Pt 2):370-5.
  40. 1 2 Yoo SH, Weon HY, Kim SJ, Kim YS, Kim BY, Kwon SW. Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol. 2010 May;60(Pt 5):1191-5.
  41. Davis, N.S., Silverman, G.J., Mausurosky, E.B. Radiation-resistant, pigmented coccus isolated from haddock tissue. J. Bacteriol. 1963;86, 294–298.
  42. 1 2 3 Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R, Schumann P, Stackebrandt E, Anderson R. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol. 2004 Nov;27(6):636-45.
  43. de Groot A, Chapon V, Servant P, Christen R, Saux MF, Sommer S, Heulin T. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol. 2005 Nov;55(Pt 6):2441-6.
  44. Suresh K, Reddy GS, Sengupta S, Shivaji S. Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol. 2004 Mar;54(Pt 2):457-61.
  45. 1 2 Im WT, Jung HM, Ten LN, Kim MK, Bora N, Goodfellow M, Lim S, Jung J, Lee ST. Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol. 2008 Oct;58(Pt 10):2348-53.
  46. Asker D, Awad TS, McLandsborough L, Beppu T, Ueda K. Deinococcus depolymerans sp. nov., a gamma- and UV-radiation-resistant bacterium, isolated from a naturally radioactive site. Int J Syst Evol Microbiol. 2011 Jun;61(Pt 6):1448-53
  47. Oyaizu H, Stackebrandt E, Schleifer KH, Ludwig W, Pohla H, Ito H, Hirata A, Oyaizu Y, Komagata K. A radiation-resistant rod-shaped bacterium, Deinobacter grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. Int. J. Syst. Bacteriol., 1987, 37, 62-67.
  48. Rainey FA, Nobre MF, Schumann P, Stackebrandt E, Da Costa MS. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol., 1997, 47, 510-514
  49. Srinivasan S, Kim MK, Lim S, Joe M, Lee M. Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int J Syst Evol Microbiol. 2011 Jul 15