Tiabendazole

Last updated
Tiabendazole
Thiabendazole.svg
Thiabendazole ball-and-stick.png
Clinical data
Trade names Mintezol, others
AHFS/Drugs.com International Drug Names
Pregnancy
category
  • AU:B3
Routes of
administration
By mouth, topical
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability Сmax 1–2 hours (oral administration)
Metabolism GI tract
Elimination half-life 8 hours
Excretion Urine (90%)
Identifiers
  • 4-(1H-1,3-Benzodiazol-2-yl)-1,3-thiazole
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
NIAID ChemDB
CompTox Dashboard (EPA)
ECHA InfoCard 100.005.206 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C10H7N3S
Molar mass 201.25 g·mol−1
3D model (JSmol)
Density 1.103 g/cm3
Melting point 293 to 305 °C (559 to 581 °F)
  • [nH]1c2ccccc2nc1c3cscn3
  • InChI=1S/C10H7N3S/c1-2-4-8-7(3-1)12-10(13-8)9-5-14-6-11-9/h1-6H,(H,12,13) X mark.svgN
  • Key:WJCNZQLZVWNLKY-UHFFFAOYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Tiabendazole (INN, BAN), also known as thiabendazole (AAN, USAN) or TBZ and the trade names Mintezol, Tresaderm, and Arbotect, is a preservative, [1] an antifungal agent, and an antiparasitic agent.

Contents

Uses

Preservative

Tiabendazole is used primarily to control mold, blight, and other fungal diseases in fruits (e.g. oranges) and vegetables; it is also used as a prophylactic treatment for Dutch elm disease. [ citation needed ]

Tiabendazole is also used as a food additive, [2] [3] a preservative with E number E233 (INS number 233). For example, it is applied to bananas to ensure freshness, and is a common ingredient in the waxes applied to the skins of citrus fruits. It is not approved as a food additive in the EU, [4] Australia and New Zealand. [5]

Use in treatment of aspergillosis has been reported. [6]

It is also used in anti-fungal wallboards as a mixture with azoxystrobin.[ citation needed ]

Parasiticide

As an antiparasitic, tiabendazole is able to control roundworms (such as those causing strongyloidiasis), [7] hookworms, and other helminth species which infect wild animals, livestock, and humans. [8] First approved for use in sheep in 1961 and horses in 1962, resistance to this drug was first found in Haemonchus contortus in 1964, and then in the two other major small ruminant nematode parasites, Teladorsagia circumcincta and Trichostrongylus colubriformis. [9]

Fungicide

Tiabendazole acts as a fungicide through binding fungal tubulin. Resistant Aspergillus nidulans specimens were found to have a mutation in the gene coding for β-tubulin, which was reversible by a mutation in the gene for α-tubulin. This showed that thiabendazole binds to both α- and β-tubulin. [10]

Other

In dogs and cats, tiabendazole is used to treat ear infections.[ clarification needed ]

Tiabendazole is also a chelating agent, which means it is used medicinally to bind metals in cases of metal poisoning, such as lead, mercury, or antimony poisoning.[ medical citation needed ]

Research

Genes responsible for the maintenance of cell walls in yeast have been shown to be responsible for angiogenesis in vertebrates. Tiabendazole serves to block angiogenesis in both frog embryos and human cells. It has also been shown to serve as a vascular disrupting agent to reduce newly established blood vessels. Tiabendazole has been shown to effectively do this in certain cancer cells. [11]

Pharmacodynamics

Tiabendazole works by inhibition of the mitochondrial, helminth-specific enzyme, fumarate reductase, with possible interaction with endogenous quinone. [12]

Safety

The substance appears to have a slight toxicity in higher doses, with effects such as liver and intestinal disorders at high exposure in test animals (just below LD50 level).[ citation needed ] Some reproductive disorders and decreasing weaning weight have been observed, also at high exposure. Effects on humans from use as a drug include nausea, vomiting, loss of appetite, diarrhea, dizziness, drowsiness, or headache; very rarely also ringing in the ears, vision changes, stomach pain, yellowing eyes and skin, dark urine, fever, fatigue, increased thirst and change in the amount of urine occur.[ citation needed ] Carcinogenic effects have been shown at higher doses. [13]

Synthesis

Intermediate arylamidine 2 is prepared by aluminium trichloride-catalyzed addition of aniline to the nitrile of 4-cyanothiazole (1). [14] [15] The amidine (2) is then converted to its N-chloro derivative 3 with sodium hypochlorite (NaOCl). Upon treatment with base, this undergoes a nitrene insertion reaction (4) to produce tiabendazole (5).

Tiabendazole synthesis Thiabendazole synthesis.svg
Tiabendazole synthesis

An alternative synthesis involves reacting 4-thiazolecarboxamide with o-phenylenediamine in polyphosphoric acid. [16]

Derivatives

A number of derivatives of tiabendazole are also pharmaceutical drugs, including albendazole, cambendazole, fenbendazole, oxfendazole, mebendazole, and flubendazole.

Preparation of cambendazole Cambendazole synthesis.svg
Preparation of cambendazole

See also

Related Research Articles

<span class="mw-page-title-main">Antifungal</span> Pharmaceutical fungicide or fungistatic used to treat and prevent mycosis

An antifungal medication, also known as an antimycotic medication, is a pharmaceutical fungicide or fungistatic used to treat and prevent mycosis such as athlete's foot, ringworm, candidiasis (thrush), serious systemic infections such as cryptococcal meningitis, and others. Such drugs are usually obtained by a doctor's prescription, but a few are available over the counter (OTC). The evolution of antifungal resistance is a growing threat to health globally.

<span class="mw-page-title-main">Griseofulvin</span> Antifungal medication used for dermatophytoses

Griseofulvin is an antifungal medication used to treat a number of types of dermatophytoses (ringworm). This includes fungal infections of the nails and scalp, as well as the skin when antifungal creams have not worked. It is taken by mouth.

<span class="mw-page-title-main">Ivermectin</span> Medication for parasite infestations

Ivermectin is an antiparasitic drug. After its discovery in 1975, its first uses were in veterinary medicine to prevent and treat heartworm and acariasis. Approved for human use in 1987, it is used to treat infestations including head lice, scabies, river blindness (onchocerciasis), strongyloidiasis, trichuriasis, ascariasis and lymphatic filariasis. It works through many mechanisms to kill the targeted parasites, and can be taken by mouth, or applied to the skin for external infestations. It belongs to the avermectin family of medications.

<span class="mw-page-title-main">Albendazole</span> Chemical compound

Albendazole is a broad-spectrum antihelmintic and antiprotozoal agent of the benzimidazole type. It is used for the treatment of a variety of intestinal parasite infections, including ascariasis, pinworm infection, hookworm infection, trichuriasis, strongyloidiasis, taeniasis, clonorchiasis, opisthorchiasis, cutaneous larva migrans, giardiasis, and gnathostomiasis, among other diseases.

<span class="mw-page-title-main">Benzimidazole</span> Chemical compound

Benzimidazole is a heterocyclic aromatic organic compound. This bicyclic compound may be viewed as fused rings of the aromatic compounds benzene and imidazole. It is a white solid that appears in form of tabular crystals.

<span class="mw-page-title-main">Piperazine</span> Chemical compound

Piperazine is an organic compound that consists of a six-membered ring containing two nitrogen atoms at opposite positions in the ring. Piperazine exists as small alkaline deliquescent crystals with a saline taste.

<span class="mw-page-title-main">Terconazole</span> Chemical compound

Terconazole is an antifungal drug used to treat vaginal yeast infection. It comes as a lotion or a suppository and disrupts the biosynthesis of fats in a yeast cell. It has a relatively broad spectrum compared to azole compounds but not triazole compounds. Testing shows that it is a suitable compound for prophylaxis for those that suffer from chronic vulvovaginal candidiasis.

<span class="mw-page-title-main">Mebendazole</span> Medication for parasitic worm infestations

Mebendazole (MBZ), sold under the brand name Vermox among others, is a medication used to treat a number of parasitic worm infestations. This includes ascariasis, pinworm infection, hookworm infections, guinea worm infections, hydatid disease, and giardia, among others. It is taken by mouth.

<span class="mw-page-title-main">Benzoxazole</span> Chemical compound

Benzoxazole is an aromatic organic compound with a molecular formula C7H5NO, a benzene-fused oxazole ring structure, and an odor similar to pyridine. Although benzoxazole itself is of little practical value, many derivatives of benzoxazoles are commercially important.

<span class="mw-page-title-main">2-Phenylphenol</span> Chemical compound

2-Phenylphenol, or o-phenylphenol, is an organic compound. In terms of structure, it is one of the monohydroxylated isomers of biphenyl. It is a white solid. It is a biocide used as a preservative with E number E231 and under the trade names Dowicide, Torsite, Fungal, Preventol, Nipacide and many others.

Antiparasitics are a class of medications which are indicated for the treatment of parasitic diseases, such as those caused by helminths, amoeba, ectoparasites, parasitic fungi, and protozoa, among others. Antiparasitics target the parasitic agents of the infections by destroying them or inhibiting their growth; they are usually effective against a limited number of parasites within a particular class. Antiparasitics are one of the antimicrobial drugs which include antibiotics that target bacteria, and antifungals that target fungi. They may be administered orally, intravenously or topically. Overuse or misuse of antiparasitics can lead to the development of antimicrobial resistance.

Otomycosis is a fungal ear infection, a superficial mycotic infection of the outer ear canal caused by micro-organisms called fungi which are related to yeast and mushrooms. It is more common in tropical or warm countries. The infection may be either subacute or acute and is characterized by itching in the ear, malodorous discharge, inflammation, pruritus, scaling, and severe discomfort or ear pain. The mycosis results in inflammation, superficial epithelial exfoliation, masses of debris containing hyphae, suppuration, and pain. Otomycosis can also cause hearing loss.

<span class="mw-page-title-main">Echinocandin</span> Group of chemical compounds

Echinocandins are a class of antifungal drugs that inhibit the synthesis of β-glucan in the fungal cell wall via noncompetitive inhibition of the enzyme 1,3-β glucan synthase. The class has been termed the "penicillin of antifungals," along with the related papulacandins, as their mechanism of action resembles that of penicillin in bacteria. β-glucans are carbohydrate polymers that are cross-linked with other fungal cell wall components, the fungal equivalent to bacterial peptidoglycan. Caspofungin, micafungin, and anidulafungin are semisynthetic echinocandin derivatives with limited clinical use due to their solubility, antifungal spectrum, and pharmacokinetic properties.

<span class="mw-page-title-main">Nitazoxanide</span> Broad-spectrum antiparasitic and antiviral medication

Nitazoxanide, sold under the brand name Alinia among others, is a broad-spectrum antiparasitic and broad-spectrum antiviral medication that is used in medicine for the treatment of various helminthic, protozoal, and viral infections. It is indicated for the treatment of infection by Cryptosporidium parvum and Giardia lamblia in immunocompetent individuals and has been repurposed for the treatment of influenza. Nitazoxanide has also been shown to have in vitro antiparasitic activity and clinical treatment efficacy for infections caused by other protozoa and helminths; evidence as of 2014 suggested that it possesses efficacy in treating a number of viral infections as well.

<span class="mw-page-title-main">Naftifine</span> Chemical compound

Naftifine hydrochloride is an allylamine antifungal drug for the topical treatment of tinea pedis, tinea cruris, and tinea corporis.

<span class="mw-page-title-main">Bifonazole</span> Chemical compound

Bifonazole is an imidazole antifungal drug used in form of ointments.

<span class="mw-page-title-main">Anthelmintic</span> Antiparasitic drugs that expel parasitic worms (helminths) from the body

Anthelmintics or antihelminthics are a group of antiparasitic drugs that expel parasitic worms (helminths) and other internal parasites from the body by either stunning or killing them and without causing significant damage to the host. They may also be called vermifuges or vermicides. Anthelmintics are used to treat people who are infected by helminths, a condition called helminthiasis. These drugs are also used to treat infected animals, particularly small ruminants such as goats and sheep.

Fungistatics are anti-fungal agents that inhibit the growth of fungus. The term fungistatic may be used as both a noun and an adjective. Fungistatics have applications in agriculture, the food industry, the paint industry, and medicine.

Topical antifungaldrugs are used to treat fungal infections on the skin, scalp, nails, vagina or inside the mouth. These medications come as creams, gels, lotions, ointments, powders, shampoos, tinctures and sprays. Most antifungal drugs induce fungal cell death by destroying the cell wall of the fungus. These drugs inhibit the production of ergosterol, which is a fundamental component of the fungal cell membrane and wall.

References

  1. "E233 : E Number : Preservative". www.ivyroses.com. Retrieved 2018-08-28.
  2. Rosenblum C (March 1977). "Non-drug-related residues in tracer studies". Journal of Toxicology and Environmental Health. 2 (4): 803–814. Bibcode:1977JTEH....2..803R. doi:10.1080/15287397709529480. PMID   853540.
  3. Sax NI (1989). Dangerous Properties of Industrial Materials. Vol. 1–3 (7th ed.). New York, NY: Van Nostrand Reinhold. p. 3251.
  4. UK Food Standards Agency: "Current EU approved additives and their E Numbers" . Retrieved 2011-10-27.
  5. Australia New Zealand Food Standards Code "Standard 1.2.4 – Labelling of ingredients". 8 September 2011. Retrieved 2011-10-27.
  6. Upadhyay MP, West EP, Sharma AP (January 1980). "Keratitis due to Aspergillus flavus successfully treated with thiabendazole". The British Journal of Ophthalmology. 64 (1): 30–32. doi:10.1136/bjo.64.1.30. PMC   1039343 . PMID   6766732.
  7. Igual-Adell R, Oltra-Alcaraz C, Soler-Company E, Sánchez-Sánchez P, Matogo-Oyana J, Rodríguez-Calabuig D (December 2004). "Efficacy and safety of ivermectin and thiabendazole in the treatment of strongyloidiasis". Expert Opinion on Pharmacotherapy. 5 (12): 2615–2619. doi:10.1517/14656566.5.12.2615. PMID   15571478. S2CID   23721306. Archived from the original on 2016-03-06.
  8. Portugal R, Schaffel R, Almeida L, Spector N, Nucci M (June 2002). "Thiabendazole for the prophylaxis of strongyloidiasis in immunosuppressed patients with hematological diseases: a randomized double-blind placebo-controlled study". Haematologica. 87 (6): 663–664. PMID   12031927.
  9. Kaplan, Ray M. (October 2004). "Drug resistance in nematodes of veterinary importance: a status report". Trends in Parasitology. 20 (10): 477–481. doi:10.1016/j.pt.2004.08.001. ISSN   1471-4922. PMID   15363441.
  10. Wang, C. C. (January 1984). "Parasite enzymes as potential targets for antiparasitic chemotherapy". Journal of Medicinal Chemistry. 27 (1): 1–9. doi:10.1021/jm00367a001. ISSN   0022-2623. PMID   6317859.
  11. Cha HJ, Byrom M, Mead PE, Ellington AD, Wallingford JB, Marcotte EM (August 2012). "Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent". PLOS Biology. 10 (8): e1001379. doi: 10.1371/journal.pbio.1001379 . PMC   3423972 . PMID   22927795.
  12. Gilman AG, Rall TW, Nies AS, Taylor P, eds. (1990). Goodman and Gilman's The Pharmacological Basis of Therapeutics (8th ed.). New York, NY: Pergamon Press. p. 970.
  13. "Reregistration Eligibility Decision Thiabendazole" (PDF). Environmental Protection Agency. Retrieved 8 January 2013.
  14. Grenda VJ, Jones RE, Gal G, Sletzinger M (1965). "Novel Preparation of Benzimidazoles from N-Arylamidines. New Synthesis of Thiabendazole". The Journal of Organic Chemistry. 30: 259–261. doi:10.1021/jo01012a061.
  15. US 3336192,Sarett LH, Brown HD,"Anthelmintic substituted benzimidazole compositions",issued 1967, assigned to Merck & Co.
  16. Brown HD, Matzuk AR, Ilves I, Peterson LH, Harris SA, Sarett LH, et al. (1961). "Antiparasitic Drugs. IV. 2-(4'-Thiazolyl)-Benzimidazole, A New Anthelmintic". Journal of the American Chemical Society. 83 (7): 1764–1765. doi:10.1021/ja01468a052.
  17. ZA 6800351,Hoff DR, Fisher MH,"Anthelmintic 5-substituted aminobenzimidazoles",issued 1969, assigned to Merck and Co., Inc. Chemical Abstracts 72, 90461 (1970).
  18. Hoff DR, Fisher MH, Bochis RJ, Lusi A, Waksmunski F, Egerton JR, et al. (May 1970). "A new broad-spectrum anthelmintic: 2-(4-thiazolyl)-5-isopropoxycarbonylamino-benzimidazole". Experientia. 26 (5): 550–551. doi:10.1007/BF01898506. PMID   4245814. S2CID   26567527.