Pioneer 4

Last updated

Pioneer 4
Pioneer IV flight spare 01.jpg
Pioneer 4 flight spare
Mission type Lunar flyby
Operator NASA
Harvard designation1959 Nu 1
COSPAR ID 1959-013A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 00113
Mission duration82.5 hours (active)
64 years, 5 months and 15 days
(in solar orbit)
Spacecraft properties
Spacecraft typePioneer
Manufacturer Jet Propulsion Laboratory
Launch mass6.08 kg [1]
Start of mission
Launch date3 March 1959, 05:10:56 GMT
Rocket Juno II
Launch site Cape Canaveral, LC-5
Contractor Chrysler Corporation
End of mission
Last contact6 March 1959, 15:40:00 GMT
Orbital parameters
Reference system Heliocentric
Semi-major axis 1.1015 astronomical units (164,780,000 km; 102,390,000 mi)
Eccentricity 0.07109
Perihelion altitude 0.98 astronomical units (147,000,000 km; 91,000,000 mi)
Aphelion altitude 1.13 astronomical units (169,000,000 km; 105,000,000 mi)
Inclination 1.5°
Period 398.0 days
Epoch 3 March 1959 [2]
Flyby of Moon
Closest approach4 March 1959, 22:25 GMT
Distance58,983 kilometres (36,650 mi)
 

Pioneer 4 was an American spin-stabilized uncrewed spacecraft launched as part of the Pioneer program on a lunar flyby trajectory and into a heliocentric orbit making it the first probe of the United States to escape from the Earth's gravity. Launched on March 3, 1959, it carried a payload similar to Pioneer 3 : a lunar radiation environment experiment using a Geiger–Müller tube detector and a lunar photography experiment. It passed within 58,983 km (36,650 mi) of the Moon's surface. However, Pioneer 4 did not come close enough to trigger its photoelectric sensor. The spacecraft was still in solar orbit as of 1969. [3] It was the only successful lunar probe launched by the U.S. in 12 attempts between 1958 and 1963; only in 1964 would Ranger 7 surpass its success by accomplishing all of its mission objectives.

Contents

After the Soviet Luna 1 probe conducted the first successful flyby of the Moon on 3 January 1959, the pressure felt by the US to succeed with a lunar mission was enormous, especially since American mission failures were entirely public while the Soviet failures were kept a secret.

Spacecraft design

Pioneer 4 was a cone-shaped probe 51 cm high and 23 cm in diameter at its base. The cone was composed of a thin fiberglass shell coated with a gold wash to make it electrically conducting and painted with white stripes to maintain the temperature between 10 and 50 °C. At the tip of the cone was a small probe which combined with the cone itself to act as an antenna. At the base of the cone, a ring of mercury batteries provided power. A photoelectric sensor protruded from the center of the ring. The sensor was designed with two photocells which would be triggered by the light of the Moon when the probe was within about 30,000 km of the Moon. At the center of the cone was a voltage supply tube and two Geiger–Müller tubes. The Laboratory's Microlock system, used for communicating with earlier Explorer satellites, did not have sufficient range to perform this mission. Therefore, a new radio system called TRAC(E) Tracking And Communication (Extraterrestrial) was designed. TRAC(E) was an integral part of the Goldstone Deep Space Communications Complex. [4] A transmitter with a mass of 0.5 kg delivered a phase modulated signal of 0.1 W at a frequency of 960.05 MHz. The modulated carrier power was 0.08 W and the total effective radiated power 0.18 W. A despin mechanism consisted of two 7 gram weights which spooled out to the end of two 150 cm wires when triggered by a hydraulic timer 10 hours after launch. The weights were designed to slow the spacecraft spin from 400 rpm to 6 rpm, and then weights and wires were released. Pioneer 4 received a few small modifications over its predecessor, namely added lead shielding around the Geiger tubes and modifications to the telemetry system to improve its reliability and signal strength. The probe had S/N #4, with probe #3 recalled from launch due to technical issues.

Launching vehicle

Pioneer 4 was launched with a Juno II launch vehicle, which also launched Pioneer 3. Juno II closely resembled the Juno I (Jupiter-C based) vehicle that launched Explorer 1. Its first stage was a 19.51 m elongated Jupiter IRBM missile that was used by the U.S. Army. On top of the Jupiter propulsion section was a guidance and control compartment that supported a rotating tub containing the rocket stages 2, 3 and 4. Pioneer 4 was mounted on top of stage 4. [5]

Mission

At 05:10:56 GMT on the night of 3 March 1959, Pioneer 4 lifted off from LC-5 at Cape Canaveral. This time, the booster performed almost perfectly so that Pioneer 4 achieved its primary objective (an Earth-Moon trajectory), returned radiation data and provided a valuable tracking exercise. A slightly longer than nominal second stage burn, however, was enough to induce small trajectory and velocity errors, so that the probe passed within 58,983 km of the Moon's surface (7.2° E, 5.7° S) on 4 March 1959 at 22:25 GMT (5:25 p.m. EST) at a speed of 7230 km/h. The distance was not close enough to trigger the photoelectric sensor. This scanning device was being tested for use in future probes to activate either a film or vidicon camera. The probe continued transmitting radiation data for 82.5 hours, to a distance of 658,000 kilometres (409,000 mi), [6] and reached perihelion on 18 March 1959 at 01:00 GMT. The cylindrical fourth stage casing (173 cm long, 15 cm diameter, 4.65 kg) went into orbit with the probe. The communication system had worked well, and it was estimated that signals could have been received out to 1,000,000 kilometres (620,000 mi) had there been enough battery power.

See also

Related Research Articles

<span class="mw-page-title-main">Mariner program</span> NASA space program from 1962 to 1973

The Mariner program was conducted by the American space agency NASA to explore other planets. Between 1962 and late 1973, NASA's Jet Propulsion Laboratory (JPL) designed and built 10 robotic interplanetary probes named Mariner to explore the inner Solar System - visiting the planets Venus, Mars and Mercury for the first time, and returning to Venus and Mars for additional close observations.

<i>Pioneer 11</i> Robotic space probe launched by NASA in 1973

Pioneer 11 is a NASA robotic space probe launched on April 5, 1973, to study the asteroid belt, the environment around Jupiter and Saturn, solar winds, and cosmic rays. It was the first probe to encounter Saturn, the second to fly through the asteroid belt, and the second to fly by Jupiter. Later, Pioneer 11 became the second of five artificial objects to achieve an escape velocity allowing it to leave the Solar System. Due to power constraints and the vast distance to the probe, the last routine contact with the spacecraft was on September 30, 1995, and the last good engineering data was received on November 24, 1995.

<span class="mw-page-title-main">Pioneer program</span> Series of United States uncrewed lunar and planetary space probes (1958-60; 1965-92)

The Pioneer programs were two series of United States lunar and planetary space probes exploration. The first program, which ran from 1958 to 1960, unsuccessfully attempted to send spacecraft to orbit the Moon, successfully sent one spacecraft to fly by the Moon, and successfully sent one spacecraft to investigate interplanetary space between the orbits of Earth and Venus. The second program, which ran from 1965 to 1992, sent four spacecraft to measure interplanetary space weather, two to explore Jupiter and Saturn, and two to explore Venus. The two outer planet probes, Pioneer 10 and Pioneer 11, became the first two of five artificial objects to achieve the escape velocity that will allow them to leave the Solar System, and carried a golden plaque each depicting a man and a woman and information about the origin and the creators of the probes, in case any extraterrestrials find them someday.

<span class="mw-page-title-main">Pioneer 0</span> 1958 failed U.S. space probe

Pioneer 0 was a failed United States space probe that was designed to go into orbit around the Moon, carrying a television camera, a micrometeorite detector and a magnetometer, as part of the first International Geophysical Year (IGY) science payload. It was designed and operated by the Air Force Ballistic Missile Division as the first spacecraft in the Pioneer program and was the first attempted launch beyond Earth orbit by any country, but the rocket failed shortly after launch. The probe was intended to be called Pioneer, but the launch failure precluded that name.

<span class="mw-page-title-main">Pioneer 2</span> 1958 NASA space probe designed to study the Moon

Pioneer 2 was the last of the three project Able space probes designed to probe lunar and cislunar space. The launch took place at 07:30:21 GMT on 8 November 1958. After Pioneer 1 had failed due to guidance system deficiencies, the guidance system was modified with a Doppler command system to ensure more accurate commands and minimize trajectory errors. Once again, the first and second stage portion of the flight was uneventful, but the third stage of the launch vehicle failed to ignite, making it impossible for Pioneer 2 to achieve orbital velocity. An attempt to fire the vernier engines on the probe was unsuccessful and the spacecraft attained a maximum altitude of 1,550 km (960 mi) before reentering Earth's atmosphere at 28.7° N, 1.9° E over NW Africa. A small amount of data was obtained during the short flight, including evidence that the equatorial region around Earth has higher flux and higher energy radiation than previously considered and that the micrometeorite density is higher around Earth than in space. The reason for the third stage failure was unclear, but it was suspected that the firing command from the second stage, which contained the guidance package for the entire launch vehicle, was never received, possibly due to damage to electrical lines during staging.

<span class="mw-page-title-main">Pioneer 1</span> 1958 NASA moon probe

Pioneer 1 was an American space probe, the first under the auspices of NASA, which was launched by a Thor-Able rocket on 11 October 1958. It was intended to orbit the Moon and make scientific measurements, but due to a guidance error failed to achieve lunar orbit and was ultimately destroyed upon reentering Earth's atmosphere. The flight, which lasted 43 hours and reached an apogee of 113,800 km, was the second and most successful of the three Thor-Able space probes.

<span class="mw-page-title-main">Pioneer 3</span> NASA robotic spacecraft designed to study the Moon

Pioneer 3 was a spin-stabilized spacecraft launched at 05:45:12 GMT on 6 December 1958 by the U.S. Army Ballistic Missile Agency in conjunction with the NASA, using a Juno II rocket. This spacecraft was intended as a lunar probe, but failed to go past the Moon and into a heliocentric orbit as planned. It did however reach an altitude of 102,360 km before falling back to Earth. The revised spacecraft objectives were to measure radiation in the outer Van Allen radiation belt using two Geiger-Müller tubes and to test the trigger mechanism for a lunar photographic experiment.

<i>Luna 1</i> Soviet spacecraft

Luna 1, also known as Mechta, E-1 No.4 and First Lunar Rover, was the first spacecraft to reach the vicinity of Earth's Moon, and the first spacecraft to be placed in heliocentric orbit. Intended as an impactor, Luna 1 was launched as part of the Soviet Luna programme in 1959.

<span class="mw-page-title-main">Pioneer P-30</span> Nasa 1960s lunar orbiter probe

Pioneer P-30 was intended to be a lunar orbiter probe, but the mission failed shortly after launch on September 25, 1960. The objectives were to place a highly instrumented probe in lunar orbit, to investigate the environment between the Earth and Moon, and to develop technology for controlling and maneuvering spacecraft from Earth. It was equipped to estimate the Moon's mass and topography of the poles, record the distribution and velocity of micrometeorites, and study radiation, magnetic fields, and low frequency electromagnetic waves in space. A mid-course propulsion system and injection rocket would have been the first United States self-contained propulsion system capable of operation many months after launch at great distances from Earth and the first U.S. tests of maneuvering a satellite in space.

Kosmos 21 was a Soviet spacecraft. This mission has been tentatively identified by NASA as a technology test of the Venera series space probes. It may have been an attempted Venus impact, presumably similar to the later Kosmos 27 mission, or it may have been intended from the beginning to remain in geocentric orbit. In any case, the spacecraft never left Earth orbit after insertion by the Molniya launcher. The orbit decayed on 14 November 1963, three days after launch.

<span class="mw-page-title-main">Trans-lunar injection</span> Propulsive maneuver used to arrive at the Moon

A trans-lunar injection (TLI) is a propulsive maneuver used to set a spacecraft on a trajectory that will cause it to arrive at the Moon.

<span class="mw-page-title-main">Gravity assist</span> Space navigation technique

A gravity assist, gravity assist maneuver, swing-by, or generally a gravitational slingshot in orbital mechanics, is a type of spaceflight flyby which makes use of the relative movement and gravity of a planet or other astronomical object to alter the path and speed of a spacecraft, typically to save propellant and reduce expense.

<span class="mw-page-title-main">Moon landing</span> Arrival of a spacecraft on the Moons surface

A Moon landing or lunar landing is the arrival of a spacecraft on the surface of the Moon. This includes both crewed and robotic missions. The first human-made object to touch the Moon was the Soviet Union's Luna 2, on 13 September 1959.

In aerospace engineering, spin stabilization is a method of stabilizing a satellite or launch vehicle by means of spin, i.e. rotation along the longitudinal axis. The concept originates from conservation of angular momentum as applied to ballistics, where the spin is commonly obtained by means of rifling. For most satellite applications this approach has been superseded by three-axis stabilization.

<span class="mw-page-title-main">Explorer 5</span> United States satellite launched in 1958

Explorer 5 was a United States satellite with a mass of 17.43 kg (38.4 lb). It was the last of the original series of Explorer satellites built, designed, and operated by the Jet Propulsion Laboratory.

<span class="mw-page-title-main">Exploration of Jupiter</span> Overview of the exploration of Jupiter the planet and its moons

The exploration of Jupiter has been conducted via close observations by automated spacecraft. It began with the arrival of Pioneer 10 into the Jovian system in 1973, and, as of 2023, has continued with eight further spacecraft missions in the vicinity of Jupiter. All of these missions were undertaken by the National Aeronautics and Space Administration (NASA), and all but two were flybys taking detailed observations without landing or entering orbit. These probes make Jupiter the most visited of the Solar System's outer planets as all missions to the outer Solar System have used Jupiter flybys. On 5 July 2016, spacecraft Juno arrived and entered the planet's orbit—the second craft ever to do so. Sending a craft to Jupiter is difficult, mostly due to large fuel requirements and the effects of the planet's harsh radiation environment.

JunoCam is the visible-light camera/telescope onboard NASA's Juno spacecraft currently orbiting Jupiter. The camera is operated by the JunoCam Digital Electronics Assembly (JDEA). Both the camera and JDEA were built by Malin Space Science Systems. JunoCam takes a swath of imaging as the spacecraft rotates; the camera is fixed to the spacecraft, so as it rotates, it gets one sweep of observation. It has a field of view of 58 degrees with four filters.

<span class="mw-page-title-main">Explorer S-1 (satellite)</span> NASA satellite of the Explorer program

Explorer S-1, also known as NASA S-1 or Explorer 7X, was a NASA Earth science satellite equipped with a suite of scientific instruments to study the environment around the Earth. The spacecraft and its Juno II launch vehicle were destroyed five seconds after launch on 16 July 1959, in a spectacular launch failure caused by complications with the launch vehicle's power supply. A relaunch of the mission in October 1959, Explorer 7 (S-1A), was successful.

References

  1. "Pioneer 4". NASA's Solar System Exploration website. Retrieved 1 December 2022.
  2. "NASA – NSSDCA – Spacecraft – Trajectory Details". nssdc.gsfc.nasa.gov. Retrieved 30 April 2018.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. "Pioneer 4". NASA.gov.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. Jet Propulsion Laboratory – Brockman, M. H.; Buchanan, R. L.; Choate, R. L.; Malling, L. R. (11 November 1959). Extraterrestrial Radio Tracking and Communication External Publication No. 808 (PDF) (Report). NASA.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. Jet Propulsion Laboratory (under contract for NASA) (1959). "The Moon Probe Pioneer IV" (PDF). NASA-JPL. Archived from the original (PDF) on 9 April 2015. Retrieved 2 February 2008.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. Hess, Wilmot (1968). The Radiation Belt and Magnetosphere .