Ranger 5

Last updated

Ranger 5
1964 71395L-Ranger.svg
Ranger 5
Mission type Lunar impactor
Operator NASA
Harvard designation1962 Beta Eta 1
COSPAR ID 1962-055A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 439
Mission duration8 hours 44 minutes [1]
Spacecraft properties
Manufacturer Jet Propulsion Laboratory
Launch mass342.46 kg [2]
Dimensions1.52 m × 2.51 m (5.0 ft × 8.2 ft)
Power135 W
Start of mission
Launch dateOctober 18, 1962, 16:59:00 (1962-10-18UTC16:59Z) UTC
Rocket Atlas LV-3 Agena-B 215D/AA7
Launch site Cape Canaveral LC-12
Orbital parameters
Reference system Heliocentric
Eccentricity 0.056
Perihelion altitude 0.9839 AU
Aphelion altitude 1.163 AU
Inclination 0.44°
Period 370.22 days
Lunar flyby (failed impact)
Closest approachOctober 21, 1962
Distance724 kilometers (450 mi)
  Ranger 4
Ranger 6  
 

Ranger 5 was a spacecraft of the Ranger program designed to transmit pictures of the lunar surface to Earth stations during a period of 10 minutes of flight prior to impacting on the Moon, to rough-land a seismometer capsule on the Moon, to collect gamma-ray data in flight, to study radar reflectivity of the lunar surface, and to continue testing of the Ranger program for development of lunar and interplanetary spacecraft. Due to an unknown malfunction, the spacecraft ran out of power and ceased operation. It passed within 725 km of the Moon. [1]

Contents

Spacecraft design

Ranger 5 was a Block II Ranger spacecraft similar to Ranger 3 and Ranger 4. The basic vehicle was 3.1 m high and consisted of a lunar capsule covered with a balsawood impact-limiter, 65 cm in diameter, a mono-propellant mid-course motor, a retrorocket with a thrust of 5,080 lbf (22.6 kN), and a gold and chrome plated hexagonal base 1.5 m in diameter. A large high-gain dish antenna was attached to the base. Two wing-like solar panels (5.2 m across) were attached to the base and deployed early in the flight. Power was generated by 8680 solar cells contained in the solar panels which charged an 11.5 kg 1 kWh capacity AgZn launching and backup battery. Spacecraft control was provided by a solid-state digital computer and sequencer and an Earth-controlled command system. Attitude control was provided by six Sun and one Earth sensor, gyroscopes, and pitch and roll cold nitrogen gas jets. The telemetry system aboard the spacecraft consisted of two 960 MHz transmitters, one at 3 W power output and the other at 50 mW power output, the high-gain antenna, and an omnidirectional antenna. White paint, gold and chrome plating, and a silvered plastic sheet encasing the retrorocket furnished thermal control. [1]

The experimental apparatus included: (1) a vidicon television camera, which employed a scan mechanism that yielded one complete frame in 10 s; (2) a gamma-ray spectrometer in a 300 mm sphere mounted on a 1.8 m boom; (3) a radar altimeter; and (4) a seismometer to be rough-landed on the lunar surface. The seismometer was encased in the lunar capsule along with an amplifier, a 50 mW transmitter, voltage control, a turnstile antenna, and six silver-cadmium batteries capable of operating the lunar capsule transmitter for 30 days, all designed to land on the Moon at 130 to 160 km/h (81 to 99 mph). The instrument package floated in a layer of freon within the balsawood sphere. The radar altimeter would be used for reflectivity studies, but was also designed to initiate capsule separation and ignite the retro-rocket. [1]

Mission

Ranger 5 lifted off from launch Complex 12 Ranger 5 Launch.jpg
Ranger 5 lifted off from launch Complex 12

Ranger 5 was scheduled for launch in June 1962, but NASA instead decided to fly the Mariner Venus probes (derived from Block I Ranger) first which gave more time to work out problems with the spacecraft. After Mariner 1 ended its mission in the Atlantic Ocean instead of interplanetary space, the agency started coming under increased scrutiny from Congress due to its apparent inability to have any kind of success with planetary probes. Republican Congressman James Fulton confronted NASA Director of the Office of Programs J.J. Wyatt, noting that Mariner 1 had cost U.S. taxpayers $14 million and that there was no excuse at this point for failures every launch. As July 1962 ended, there had been 12 planetary probe attempts going back to 1958 and only two (Pioneer 4 and Pioneer 5) accomplished all of their mission goals. It might have been small consolation that Soviet planetary probe efforts during this time were little more successful, but all of their failures were kept secret, so the Soviets did not have to answer to their public about the waste of tax money on failed space missions.

The successful launch of Mariner 2 on August 27 momentarily blunted criticism of NASA and Jet Propulsion Laboratory and also seemed to verify the soundness of the Ranger design. Meanwhile, JPL engineers were still trying to figure out what had caused the computer failure on Ranger 4, which had occurred during a period when the probe was out of range of ground tracking. The malfunction was especially puzzling because the probe had been given very thorough ground testing without any anomalies occurring. Examination of telemetry records seemed to suggest that the failure had occurred during separation of Ranger 4 from the Agena, at the point where the electrical interface between the two was disconnected and Ranger 4 would have switched to internal power. The behavior of the probe indicated a transformer or inverter malfunction, probably a short circuit caused by loose metal coatings contacting the pins on the power umbilical attaching the probe to the Agena. Modifications to Ranger 5 included a backup timer to ensure continued operation of the telemetry system if the main computer failed, an additional nitrogen bottle to the attitude control system to reduce gas pressure, and an additional pyrotechnic igniter for the midcourse correction engine. Most importantly, extra diodes and fuses were added to the electrical lines to prevent another short from occurring.

Ranger 5 Ranger block2.jpg
Ranger 5
Ranger Program officials Assembled for the Ranger 5 Postlaunch Press Conference at Cape Canaveral. Left to Right: Friedrich Duerr, Major J. Mulladay, Lt. Col. Jack Albert, Kurt Debus, William Cunningham, and James Burke Ranger 5 Postlaunch Press Conference.jpg
Ranger Program officials Assembled for the Ranger 5 Postlaunch Press Conference at Cape Canaveral. Left to Right: Friedrich Duerr, Major J. Mulladay, Lt. Col. Jack Albert, Kurt Debus, William Cunningham, and James Burke

Ranger 5 was heat-sterilized like Rangers 3-4 had been, so as to prevent unintended contamination of the Moon with Earth microbes. Rolf Halstrup, who was in charge of the sterilization program, had vocally objected to this procedure as he was convinced that subjecting the probes to a heat dosage was damaging the sensitive electronics in them. He convinced JPL in Pasadena management that sterilization of Ranger 4 had "very likely" damaged the main computer sequencer and timer and that the procedure needed to be stopped to ensure reliability of the spacecraft. Management agreed to stop sterilizing Ranger probes, but only on Ranger 8 and up, as Rangers 6-7 had already been sterilized.

On August 20, Ranger 5 began the long cross-country trip from state of California to Florida and arrived there the day of Mariner 2's launch. Atlas 215D and Agena 6005 arrived later that week and prelaunch checkouts were started. Initial preparations focused on the launch vehicle itself, which was causing almost as many problems as the Ranger probes themselves. The Atlas-Agena combination malfunctioned four out of the six times that NASA had launched it and every booster that was delivered to Cape Canaveral required modifications or repair work before it could fly. Moreover, in the year between Ranger 1 and Mariner 2, there had been no improvement whatsoever in the quality control of the Atlas-Agenas. Since Ranger launches had been delayed before by booster problems, technicians rushed to make sure nothing of the sort would delay Ranger 5's mission.

Tracking of Mariner 2 was an ongoing job during this time and since NASA's deep space tracking networks could not handle both probes at once, it was decided to switch attention to Ranger 5 for its short mission.

After two launch attempts were aborted, one due to an electrical short in the probe and the other due to weather concerns, the go to fly was given for October 18. Liftoff took place at 12:59 PM EST and the Atlas soon vanished into an overcast gray sky. A malfunction of the guidance system rate beacon at T+93 seconds resulted in noisy track rate data, but, unlike Ranger 3, discrete commands were received and issued by the guidance system properly. The Agena reached orbit successfully and began the burn to place Ranger 5 on a translunar trajectory.

Soon, however, high temperatures were detected in the computer system, and shortly afterwards, power generation from the solar panels ceased. The gamma ray detector was turned on, but the computer did not issue the command to align the spacecraft with Earth. Then the telemetry receivers at the tracking stations in Australia and South Africa malfunctioned, returning garbled data. It was obvious that an electrical short had disabled the solar panels, which meant that Ranger 5 now had only a few hours before it would run out of battery power. JPL technicians thought that they could still partially salvage the mission by firing the midcourse correction engine to ensure impact with the Moon, but they had to do it quickly before power ran out. Ground controllers sent commands to unfurl the high-gain antenna and align the probe for the midcourse burn, but during this time more electrical shorts apparently occurred because there was a momentary dropout from the telemetry transmitter. The midcourse engine was fired, but Ranger 5 exhausted its batteries halfway through the burn. The radio transponder and telemetry signals ceased, followed by uncontrolled tumbling of the probe. Ranger 5 passed 450 miles from the lunar surface en route to a permanent orbit around the Sun. Signals were still received from the tiny seismometer capsule until fading as the probe's distance from Earth became too great. Mission controllers tracked it to a distance of 1.3 million kilometres (810,000 mi). [1]

This was the third attempt to impact the lunar surface with a Block II Ranger spacecraft. On this mission, just 15 minutes after normal operation, a malfunction led to the transfer of power from solar to battery power. Normal operation never resumed; battery power was depleted after 8 hours, and all spacecraft systems died. The first midcourse correction was never implemented, and Ranger 5 passed the Moon at a range of 724 kilometers on October 21 and entered heliocentric orbit. It was tracked to a distance of 1,271,381 kilometers. Before loss of signal, the spacecraft sent back about 4 hours of data from the gamma-ray experiment. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Mariner program</span> NASA space program from 1962 to 1973

The Mariner program was conducted by the American space agency NASA to explore other planets. Between 1962 and late 1973, NASA's Jet Propulsion Laboratory (JPL) designed and built 10 robotic interplanetary probes named Mariner to explore the inner Solar System - visiting the planets Venus, Mars and Mercury for the first time, and returning to Venus and Mars for additional close observations.

<span class="mw-page-title-main">Mariner 4</span> Robotic spacecraft sent by NASA to Mars (1964–67)

Mariner 4 was the fourth in a series of spacecraft intended for planetary exploration in a flyby mode. It was designed to conduct closeup scientific observations of Mars and to transmit these observations to Earth. Launched on November 28, 1964, Mariner 4 performed the first successful flyby of the planet Mars, returning the first close-up pictures of the Martian surface. It captured the first images of another planet ever returned from deep space; their depiction of a cratered, dead planet largely changed the scientific community's view of life on Mars. Other mission objectives were to perform field and particle measurements in interplanetary space in the vicinity of Mars and to provide experience in and knowledge of the engineering capabilities for interplanetary flights of long duration. Initially expected to remain in space for eight months, Mariner 4's mission lasted about three years in solar orbit. On December 21, 1967, communications with Mariner 4 were terminated.

<span class="mw-page-title-main">Mariner 2</span> 1962 space probe to Venus

Mariner 2, an American space probe to Venus, was the first robotic space probe to report successfully from a planetary encounter. The first successful spacecraft in the NASA Mariner program, it was a simplified version of the Block I spacecraft of the Ranger program and an exact copy of Mariner 1. The missions of the Mariner 1 and 2 spacecraft are sometimes known as the Mariner R missions. Original plans called for the probes to be launched on the Atlas-Centaur, but serious developmental problems with that vehicle forced a switch to the much smaller Agena B second stage. As such, the design of the Mariner R vehicles was greatly simplified. Far less instrumentation was carried than on the Soviet Venera probes of this period—for example, forgoing a TV camera—as the Atlas-Agena B had only half as much lift capacity as the Soviet 8K78 booster. The Mariner 2 spacecraft was launched from Cape Canaveral on August 27, 1962, and passed as close as 34,773 kilometers (21,607 mi) to Venus on December 14, 1962.

<span class="mw-page-title-main">Mariner 6 and 7</span> Robotic spacecraft sent to Mars in 1969

Mariner 6 and Mariner 7 were two uncrewed NASA robotic spacecraft that completed the first dual mission to Mars in 1969 as part of NASA's wider Mariner program. Mariner 6 was launched from Launch Complex 36B at Cape Canaveral Air Force Station and Mariner 7 from Launch Complex 36A. The two craft flew over the equator and south polar regions, analyzing the atmosphere and the surface with remote sensors, and recording and relaying hundreds of pictures. The mission's goals were to study the surface and atmosphere of Mars during close flybys, in order to establish the basis for future investigations, particularly those relevant to the search for extraterrestrial life, and to demonstrate and develop technologies required for future Mars missions. Mariner 6 also had the objective of providing experience and data which would be useful in programming the Mariner 7 encounter five days later.

<span class="mw-page-title-main">Mariner 1</span> 1962 NASA unmanned mission to fly by Venus

Mariner 1, built to conduct the first American planetary flyby of Venus, was the first spacecraft of NASA's interplanetary Mariner program. Developed by Jet Propulsion Laboratory, and originally planned to be a purpose-built probe launched summer 1962, Mariner 1's design was changed when the Centaur proved unavailable at that early date. Mariner 1, were then adapted from the lighter Ranger lunar spacecraft. Mariner 1 carried a suite of experiments to determine the temperature of Venus as well to measure magnetic fields and charged particles near the planet and in interplanetary space.

<span class="mw-page-title-main">Mariner 3</span> Failed robotic deep-spacecraft to Mars

Mariner 3 was one of two identical deep-space probes designed and built by the Jet Propulsion Laboratory (JPL) for NASA's Mariner-Mars 1964 project that were intended to conduct close-up (flyby) scientific observations of the planet Mars and transmit information on interplanetary space and the space surrounding Mars, televised images of the Martian surface and radio occultation data of spacecraft signals as affected by the Martian atmosphere back to Earth.

<span class="mw-page-title-main">Mariner 5</span> NASA space probe launched in 1967 to study Venus

Mariner 5 was a spacecraft of the Mariner program that carried a complement of experiments to probe Venus' atmosphere by radio occultation, measure the hydrogen Lyman-alpha spectrum, and sample the solar particles and magnetic field fluctuations above the planet. Its goals were to measure interplanetary and Venusian magnetic fields, charged particles, plasma, radio refractivity and UV emissions of the Venusian atmosphere.

<span class="mw-page-title-main">Pioneer 4</span> NASA robotic spacecraft designed to study the Moon

Pioneer 4 was an American spin-stabilized uncrewed spacecraft launched as part of the Pioneer program on a lunar flyby trajectory and into a heliocentric orbit making it the first probe of the United States to escape from the Earth's gravity. Launched on March 3, 1959, it carried a payload similar to Pioneer 3: a lunar radiation environment experiment using a Geiger–Müller tube detector and a lunar photography experiment. It passed within 58,983 km (36,650 mi) of the Moon's surface. However, Pioneer 4 did not come close enough to trigger its photoelectric sensor. The spacecraft was still in solar orbit as of 1969. It was the only successful lunar probe launched by the U.S. in 12 attempts between 1958 and 1963; only in 1964 would Ranger 7 surpass its success by accomplishing all of its mission objectives.

<span class="mw-page-title-main">Ranger 1</span>

Ranger 1 was a prototype spacecraft launched as part of the Ranger program of uncrewed space missions. Its primary mission was to test the performance of those functions and parts necessary for carrying out subsequent lunar and planetary missions; a secondary objective was to study the nature of particles and fields in the space environment. Due to a launch vehicle malfunction, the spacecraft could reach only Low Earth orbit, rather than the high Earth orbit that had been planned, and was only able to complete part of its mission.

<span class="mw-page-title-main">Ranger 2</span>

Ranger 2 was a flight test of the Ranger spacecraft system of the NASA Ranger program designed for future lunar and interplanetary missions. Ranger 2 was designed to test various systems for future exploration and to conduct scientific observations of cosmic rays, magnetic fields, radiation, dust particles, and a possible hydrogen gas "tail" trailing the Earth.

<span class="mw-page-title-main">Ranger 3</span> 1962 robotic lunar exploration mission by NASA; malfunctioned

Ranger 3 was a space exploration mission conducted by NASA to study the Moon. The Ranger 3 robotic spacecraft was launched January 26, 1962 as part of the Ranger program. Due to a series of malfunctions, the spacecraft missed the Moon by 22,000 mi (35,000 km) and entered a heliocentric orbit.

<span class="mw-page-title-main">Ranger 4</span> 1962 American unmanned space flight intended to study the Moon

Ranger 4 was a spacecraft of the Ranger program, launched in 1962. It was designed to transmit pictures of the lunar surface to Earth stations during a period of 10 minutes of flight prior to crashing upon the Moon, to rough-land a seismometer capsule on the Moon, to collect gamma-ray data in flight, to study radar reflectivity of the lunar surface, and to continue testing of the Ranger program for development of lunar and interplanetary spacecraft.

<span class="mw-page-title-main">Ranger program</span> American uncrewed lunar space missions in the 1960s

The Ranger program was a series of uncrewed space missions by the United States in the 1960s whose objective was to obtain the first close-up images of the surface of the Moon. The Ranger spacecraft were designed to take images of the lunar surface, transmitting those images to Earth until the spacecraft were destroyed upon impact. A series of mishaps, however, led to the failure of the first six flights. At one point, the program was called "shoot and hope". Congress launched an investigation into "problems of management" at NASA Headquarters and Jet Propulsion Laboratory. After two reorganizations of the agencies, Ranger 7 successfully returned images in July 1964, followed by two more successful missions.

<span class="mw-page-title-main">Venera 3</span> Soviet Venus space probe

Venera 3 was a Venera program space probe that was built and launched by the Soviet Union to explore the surface of Venus. It was launched on 16 November 1965 at 04:19 UTC from Baikonur, Kazakhstan, USSR. The probe comprised an entry probe, designed to enter the Venus atmosphere and parachute to the surface, and a carrier/flyby spacecraft, which carried the entry probe to Venus and also served as a communications relay for the entry probe.

<span class="mw-page-title-main">Ranger 7</span> United States lunar space probe

Ranger 7 was the first space probe of the United States to successfully transmit close images of the lunar surface back to Earth. It was also the first completely successful flight of the Ranger program. Launched on July 28, 1964, Ranger 7 was designed to achieve a lunar-impact trajectory and to transmit high-resolution photographs of the lunar surface during the final minutes of flight up to impact.

<span class="mw-page-title-main">Ranger 6</span> United States lunar space probe

Ranger 6 was a lunar probe in the NASA Ranger program, a series of robotic spacecraft of the early and mid-1960s to obtain close-up images of the Moon's surface. It was launched on January 30, 1964 and was designed to transmit high-resolution photographs of the lunar terrain during the final minutes of flight until impacting the surface. The spacecraft carried six television vidicon cameras—two wide-angle and four narrow-angle —to accomplish these objectives. The cameras were arranged in two separate chains, or channels, each self-contained with separate power supplies, timers, and transmitters so as to afford the greatest reliability and probability of obtaining high-quality television pictures. No other experiments were carried on the spacecraft. Due to a failure of the camera system, no images were returned.

<span class="mw-page-title-main">Ranger 8</span> NASA spacecraft to explore the Moon, 1965

Ranger 8 was a lunar probe in the Ranger program, a robotic spacecraft series launched by NASA in the early-to-mid-1960s to obtain the first close-up images of the Moon's surface. These pictures helped select landing sites for Apollo missions and were used for scientific study. During its 1965 mission, Ranger 8 transmitted 7,137 lunar surface photographs before it crashed into the Moon as planned. This was the second successful mission in the Ranger series, following Ranger 7. Ranger 8's design and purpose were very similar to those of Ranger 7. It had six television vidicon cameras: two full-scan and four partial-scan. Its sole purpose was to document the Moon's surface.

<span class="mw-page-title-main">Ranger 9</span> Lunar space probe launched in 1965 as part of NASAs Ranger program

Ranger 9 was a Lunar probe, launched in 1965 by NASA. It was designed to achieve a lunar impact trajectory and to transmit high-resolution photographs of the lunar surface during the final minutes of flight up to impact. The spacecraft carried six television vidicon cameras—two wide-angle and four narrow-angle —to accomplish these objectives. The cameras were arranged in two separate chains, or channels, each self-contained with separate power supplies, timers, and transmitters so as to afford the greatest reliability and probability of obtaining high-quality television pictures. These images were broadcast live on television to millions of viewers across the United States. No other experiments were carried on the spacecraft.

<span class="mw-page-title-main">Moon landing</span> Arrival of a spacecraft on the Moons surface

A Moon landing or lunar landing is the arrival of a spacecraft on the surface of the Moon, including both crewed and robotic missions. The first human-made object to touch the Moon was Luna 2 in 1959.

<span class="mw-page-title-main">Atlas-Agena</span> American expendable launch system

The Atlas-Agena was an American expendable launch system derived from the SM-65 Atlas missile. It was a member of the Atlas family of rockets, and was launched 109 times between 1960 and 1978. It was used to launch the first five Mariner uncrewed probes to the planets Venus and Mars, and the Ranger and Lunar Orbiter uncrewed probes to the Moon. The upper stage was also used as an uncrewed orbital target vehicle for the Gemini crewed spacecraft to practice rendezvous and docking. However, the launch vehicle family was originally developed for the Air Force and most of its launches were classified DoD payloads.

References

  1. 1 2 3 4 5 6 "National Space Science Data Center - Ranger 5". National Air and Space Administration. Retrieved June 19, 2012.
  2. "Ranger 5". NASA's Solar System Exploration website. Retrieved December 1, 2022.
  3. NASA, Goddard Space Flight Center. "Experiments on Ranger 5". NSSDC Master Catalog. Retrieved December 4, 2022.