Anabasine

Last updated
Anabasine
Anabasin.svg
Clinical data
ATC code
  • none
Identifiers
  • 3-(2-piperidyl)pyridine
CAS Number
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.007.084 100.150.777, 100.007.084 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C10H14N2
Molar mass 162.236 g·mol−1
3D model (JSmol)
  • n1cc(ccc1)C2CCCCN2
  • InChI=1S/C10H14N2/c1-2-7-12-10(5-1)9-4-3-6-11-8-9/h3-4,6,8,10,12H,1-2,5,7H2 Yes check.svgY
  • Key:MTXSIJUGVMTTMU-UHFFFAOYSA-N Yes check.svgY
   (verify)

Anabasine is a pyridine and piperidine alkaloid found in the Tree Tobacco ( Nicotiana glauca ) plant, as well as in the close relative of the common tobacco plant ( Nicotiana tabacum ). [1] It is a structural isomer of, and chemically similar to, nicotine. Its principal (historical) industrial use is as an insecticide.

Contents

Anabasine is present in trace amounts in tobacco smoke, and can be used as an indicator of a person's exposure to tobacco smoke. [2]

Pharmacology

Anabasine is a nicotinic acetylcholine receptor agonist. In high doses, it produces a depolarizing block of nerve transmission, which can cause symptoms similar to those of nicotine poisoning and, ultimately, death by asystole. [3] In larger amounts it is thought to be teratogenic in swine. [4]

The intravenous LD50 of anabasine ranges from 11 mg/kg to 16 mg/kg in mice, depending on the enantiomer. [5]

Analogs

B. Bhatti, et al. made some higher potency sterically strained bicyclic analogs of anabasine: [6]

See also

Related Research Articles

<span class="mw-page-title-main">Nicotine</span> Mild chemical stimulant produced by some plants

Nicotine is a naturally produced alkaloid in the nightshade family of plants and is widely used recreationally as a stimulant and anxiolytic. As a pharmaceutical drug, it is used for smoking cessation to relieve withdrawal symptoms. Nicotine acts as a receptor agonist at most nicotinic acetylcholine receptors (nAChRs), except at two nicotinic receptor subunits where it acts as a receptor antagonist.

<i>Nicotiana</i> Genus of flowering plants in the nightshade family Solanaceae

Nicotiana is a genus of herbaceous plants and shrubs in the family Solanaceae, that is indigenous to the Americas, Australia, Southwestern Africa and the South Pacific. Various Nicotiana species, commonly referred to as tobacco plants, are cultivated as ornamental garden plants. N. tabacum is grown worldwide for the cultivation of tobacco leaves used for manufacturing and producing tobacco products, including cigars, cigarillos, cigarettes, chewing tobacco, dipping tobacco, snuff, and snus.

<i>Nicotiana glauca</i> Species of plant

Nicotiana glauca is a species of flowering plant in the tobacco genus Nicotiana of the nightshade family Solanaceae. It is known by the common name tree tobacco. Its leaves are attached to the stalk by petioles, and its leaves and stems are neither pubescent nor sticky like Nicotiana tabacum. It resembles Cestrum parqui but differs in the form of leaves and fusion of the outer floral parts. It grows to heights of more than two meters.

<span class="mw-page-title-main">Nicotine poisoning</span> Medical condition

Nicotine poisoning describes the symptoms of the toxic effects of nicotine following ingestion, inhalation, or skin contact. Nicotine poisoning can potentially be deadly, though serious or fatal overdoses are rare. Historically, most cases of nicotine poisoning have been the result of use of nicotine as an insecticide. More recent cases of poisoning typically appear to be in the form of Green Tobacco Sickness, or due to unintended ingestion of tobacco or tobacco products or consumption of nicotine-containing plants.

<i>Nicotiana rustica</i> Species of plant

Nicotiana rustica, commonly known as Aztec tobacco or strong tobacco, is a rainforest plant in the family Solanaceae. It is a very potent variety of tobacco, containing up to nine times more nicotine than common species of Nicotiana such as Nicotiana tabacum. More specifically, N. rustica leaves have a nicotine content as high as 9%, whereas N. tabacum leaves contain about 1 to 3%. The high concentration of nicotine in its leaves makes it useful for producing pesticides, and it has a wide variety of uses specific to cultures around the world. However, N. rustica is no longer cultivated in its native North America, as N. tabacum has replaced it.

<span class="mw-page-title-main">Epibatidine</span> Toxic chemical from some poison dart frogs

Epibatidine is a chlorinated alkaloid that is secreted by the Ecuadoran frog Epipedobates anthonyi and poison dart frogs from the Ameerega genus. It was discovered by John W. Daly in 1974, but its structure was not fully elucidated until 1992. Whether epibatidine is the first observed example of a chlorinated alkaloid remains controversial, due to challenges in conclusively identifying the compound from the limited samples collected by Daly. By the time that high-resolution spectrometry was used in 1991, there remained less than one milligram of extract from Daly's samples, raising concerns about possible contamination. Samples from other batches of the same species of frog failed to yield epibatidine.

<i>Nicotiana tabacum</i> Species of plant

Nicotiana tabacum, or cultivated tobacco, is an annually grown herbaceous plant of the genus Nicotiana. N. tabacum is the most commonly grown species in the genus Nicotiana, as the plant's leaves are commercially harvested to be processed into tobacco for human use. The plant is tropical in origin, is commonly grown throughout the world, and is often found in cultivation. It grows to heights between 1 and 2 meters. Research is ongoing into its ancestry among wild Nicotiana species, but it is believed to be a hybrid of Nicotiana sylvestris, N. tomentosiformis, and possibly N. otophora.

The alpha-4 beta-2 nicotinic receptor, also known as the α4β2 receptor, is a type of nicotinic acetylcholine receptor implicated in learning, consisting of α4 and β2 subunits. It is located in the brain, where activation yields post- and presynaptic excitation, mainly by increased Na+ and K+ permeability.

<span class="mw-page-title-main">Alpha-7 nicotinic receptor</span>

The alpha-7 nicotinic receptor, also known as the α7 receptor, is a type of nicotinic acetylcholine receptor implicated in long-term memory, consisting entirely of α7 subunits. As with other nicotinic acetylcholine receptors, functional α7 receptors are pentameric [i.e., (α7)5 stoichiometry].

<span class="mw-page-title-main">Rivanicline</span> Chemical compound

Rivanicline is a drug which acts as a partial agonist at neural nicotinic acetylcholine receptors. It is subtype-selective, binding primarily to the α4β2 subtype. It has nootropic effects and was originally developed as a potential treatment for Alzheimer's disease, but a second action that was subsequently found was that it inhibits the production of Interleukin-8 and thus produces an antiinflammatory effect, and so it has also been developed as a potential treatment for ulcerative colitis. Rivanicline also has stimulant and analgesic actions which are thought to be mediated through stimulation of noradrenaline release, and so it could also have other applications. It has been identified as constituent of tobacco as well.

<span class="mw-page-title-main">Epiboxidine</span> Chemical compound

Epiboxidine is a chemical compound which acts as a partial agonist at neural nicotinic acetylcholine receptors, binding to both the α3β4 and the α4β2 subtypes. It was developed as a less toxic analogue of the potent frog-derived alkaloid epibatidine, which is around 200 times stronger than morphine as an analgesic but produces extremely dangerous toxic nicotinic side effects.

<span class="mw-page-title-main">RTI-126</span> Pharmaceutical drug

RTI-126 is a phenyltropane derivative which acts as a potent monoamine reuptake inhibitor and stimulant drug, and has been sold as a designer drug. It is around 5 times more potent than cocaine at inhibiting monoamine reuptake in vitro, but is relatively unselective. It binds to all three monoamine transporters, although still with some selectivity for the dopamine transporter. RTI-126 has a fast onset of effects and short duration of action, and its pharmacological profile in animals is among the closest to cocaine itself out of all the drugs in the RTI series. Its main application in scientific research has been in studies investigating the influence of pharmacokinetics on the abuse potential of stimulant drugs, with its rapid entry into the brain thought to be a key factor in producing its high propensity for development of dependence in animals.

<span class="mw-page-title-main">AR-R17779</span> Chemical compound

AR-R17779 is a drug that acts as a potent and selective full agonist for the α7 subtype of neural nicotinic acetylcholine receptors. It has nootropic effects in animal studies, but its effects do not substitute for those of nicotine. It has also been studied as a potential novel treatment for arthritis.

<span class="mw-page-title-main">PHA-543,613</span> Chemical compound

PHA-543,613 is a drug that acts as a potent and selective agonist for the α7 subtype of neural nicotinic acetylcholine receptors, with a high level of brain penetration and good oral bioavailability. It is under development as a possible treatment for cognitive deficits in schizophrenia. It reduces excitotoxicity and protects striatal dopaminergic neurons in rat models. It also potentiates cognitive enhancement from memantine, decreases dynorphin release and inhibits GSK-B3.

<span class="mw-page-title-main">TC-1698</span> Chemical compound

TC-1698 is a drug developed by Targacept which acts as a partial agonist for the α7 subtype of neural nicotinic acetylcholine receptors. It has neuroprotective effects in animal studies, and has been used as a lead compound to find further potent derivatives.

The alpha-3 beta-4 nicotinic receptor, also known as the α3β4 receptor and the ganglion-type nicotinic receptor, is a type of nicotinic acetylcholine receptor, consisting of α3 and β4 subunits. It is located in the autonomic ganglia and adrenal medulla, where activation yields post- and/or presynaptic excitation, mainly by increased Na+ and K+ permeability.

<span class="mw-page-title-main">Anatabine</span> Chemical compound

Anatabine (uh-nat-uh-been,-bin) is one of the minor alkaloids found in plants in the family Solanaceae, which includes the tobacco plant and tomato. Commercial tobacco plants typically produce alkaloids at levels between 2% and 4% of total dry weight, with nicotine accounting for about 90% of the total alkaloid content, and the related compounds anatabine, nornicotine, and anabasine making up nearly all the rest. These compounds are thought to be biologically active, and part of plants' natural defense system against insects.

<span class="mw-page-title-main">Nornicotine</span> Chemical compound

Nornicotine is an alkaloid found in various plants including Nicotiana, the tobacco plant. It is chemically similar to nicotine, but does not contain a methyl group.

<span class="mw-page-title-main">RJR-2429</span>

RJR-2429 is a drug that acts as an agonist at neural nicotinic acetylcholine receptors, binding to both the α3β4 and the α4β2 subtypes. RJR-2429 is stronger than nicotine but weaker than epibatidine in most assays, and with high affinity for both α3β4 and α4β2 subtypes, as well as the less studied α1βγδ subtype.

<span class="mw-page-title-main">Solanaceae</span> Family of flowering plants that includes tomatoes, potatoes and tobacco

The Solanaceae, or the nightshades, are a family of flowering plants that ranges from annual and perennial herbs to vines, lianas, epiphytes, shrubs, and trees, and includes a number of agricultural crops, medicinal plants, spices, weeds, and ornamentals. Many members of the family contain potent alkaloids, and some are highly toxic, but many—including tomatoes, potatoes, eggplant, bell and chili peppers—are used as food. The family belongs to the order Solanales, in the asterid group and class Magnoliopsida (dicotyledons). The Solanaceae consists of about 98 genera and some 2,700 species, with a great diversity of habitats, morphology and ecology.

References

  1. Laszlo C, Kaminski K, Guan H, Fatarova M, Wei J, Bergounioux A, et al. (November 2022). "Fractionation and Extraction Optimization of Potentially Valuable Compounds and Their Profiling in Six Varieties of Two Nicotiana Species". Molecules. 27 (22): 8105. doi: 10.3390/molecules27228105 . PMC   9694777 . PMID   36432206.
  2. Jacob P, Yu L, Shulgin AT, Benowitz NL (May 1999). "Minor tobacco alkaloids as biomarkers for tobacco use: comparison of users of cigarettes, smokeless tobacco, cigars, and pipes". American Journal of Public Health. 89 (5): 731–6. doi:10.2105/AJPH.89.5.731. PMC   1508721 . PMID   10224986.
  3. Mizrachi N, Levy S, Goren ZQ (May 2000). "Fatal poisoning from Nicotiana glauca leaves: identification of anabasine by gas-chromatography/mass spectrometry". Journal of Forensic Sciences. 45 (3): 736–41. doi:10.1520/JFS14761J. PMID   10855991.
  4. "Notes on Poisoning: Nicotiana tabacum". Canadian Biodiversity Information Facility. 2008-03-18. Retrieved 2008-05-01.
  5. Lee ST, Wildeboer K, Panter KE, Kem WR, Gardner DR, Molyneux RJ, et al. (2006). "Relative toxicities and neuromuscular nicotinic receptor agonistic potencies of anabasine enantiomers and anabaseine". Neurotoxicology and Teratology. 28 (2): 220–8. doi:10.1016/j.ntt.2005.12.010. PMID   16488116.
  6. Bhatti BS, Strachan JP, Breining SR, Miller CH, Tahiri P, Crooks PA, et al. (May 2008). "Synthesis of 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane, 2-(pyridin-3-yl)-1-azabicyclo[2.2.2]octane, and 2-(pyridin-3-yl)-1-azabicyclo[3.2.1]octane, a class of potent nicotinic acetylcholine receptor-ligands". The Journal of Organic Chemistry. 73 (9): 3497–507. doi:10.1021/jo800028q. PMID   18363376.