Oligohymenophorea

Last updated

Oligohymenophorea
Paramecium.jpg
Paramecium aurelia (Order Peniculida)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: TSAR
Clade: SAR
Clade: Alveolata
Phylum: Ciliophora
Subphylum: Intramacronucleata
Infraphylum: Ventrata
Class: Oligohymenophorea
de Puytorac, Batisse, Bohatier, Corliss, Deroux, Didier, Dragesco, Fryd-Versavel, Grain, Grollere, Horasse, Mode, Laval, Roque, Savoie & Tuffrau, 1974 [1]
Subclasses [2]

The Oligohymenophorea are a large class of ciliates. There is typically a ventral groove containing the mouth and distinct oral cilia, separate from those of the body. These include a paroral membrane to the right of the mouth and membranelles, usually three in number, to its left. The cytopharynx is inconspicuous and never forms the complex cyrtos found in similar classes. Body cilia generally arise from monokinetids, with dikinetids occurring in limited distribution over part of the body.

Contents

Characteristics

In most groups the body cilia are uniform and often dense, while the oral cilia are inconspicuous and sometimes reduced, but among the peritrichs almost the opposite is the case. Members are widely distributed, and include many free-living (typically fresh-water, but many marine) and symbiotic forms. Most are microphagous, grazing on smaller organisms swept into the mouth by the cilia, but various other feeding habits occur. In one group, the astomes, the mouth and associated structures have been lost altogether.

The Oligohymenophorea were first proposed in 1974 as one of three classes of ciliates, together with the Polyhymenophorea or spirotrichs and the now abandoned Kinetofragmophora. Since then the apostomes have been added, but otherwise its composition has remained relatively constant, with the main variations being the positions of the peniculids and plagiopylids.

Zoothamnium niveum Zoothamnium niveum.jpg
Zoothamnium niveum

List of orders

According to the WoRMS :

Related Research Articles

<span class="mw-page-title-main">Spirotrich</span> Class of single-celled organisms

The spirotrichs are a large and diverse group of ciliate protozoa. They typically have prominent oral cilia in the form of a series of polykinetids, called the adoral zone of membranelles, beginning anterior to the oral cavity and running down to the left side of the mouth. There may also be one or two paroral membranes on its right side. The body cilia are fused to form polykinetids called cirri in some, and are sparse to absent in others.

<span class="mw-page-title-main">Sipuncula</span> Phylum of invertebrates, peanut worms

The Sipuncula or Sipunculida is a class containing about 162 species of unsegmented marine annelid worms. The name Sipuncula is from the genus name Sipunculus, and comes from the Latin siphunculus meaning a "small tube".

<span class="mw-page-title-main">Scyphozoa</span> Class of marine cnidarians, true jellyfish

The Scyphozoa are an exclusively marine class of the phylum Cnidaria, referred to as the true jellyfish.

<span class="mw-page-title-main">Heterotrich</span> Class of single-celled organisms

The heterotrichs are a class of ciliates. They typically have a prominent adoral zone of membranelles circling the mouth, used in locomotion and feeding, and shorter cilia on the rest of the body. Many species are highly contractile, and are typically compressed or conical in form. These include some of the largest protozoa, such as Stentor and Spirostomum, as well as many brightly pigmented forms, such as certain Blepharisma.

The plagiopylids are a small order of ciliates, including a few forms common in anaerobic habitats.

<span class="mw-page-title-main">Nassophorea</span> Class of single-celled organisms

The Nassophorea are a class of ciliates. Members are free-living, usually in freshwater but also in marine and soil environments. The mouth is anterior ventral and leads to a curved cytopharynx supported by a prominent palisade of rods or nematodesmata, forming a structure called a cyrtos or nasse, typical of this and a few other classes. When present, extrusomes take the form of fibrous trichocysts. Cilia are usually monokinetids, but vary from order to order.

<span class="mw-page-title-main">Peniculid</span> Order of single-celled organisms

The peniculids are an order of ciliate protozoa, including the well-known Paramecium and related genera, such as Frontonia, Stokesia, Urocentrum and Lembadion. Most are relatively large, freshwater forms that feed by sweeping smaller organisms into the mouth. They have weird life cycles, and in many cases do not even form resting cysts.

<span class="mw-page-title-main">Litostomatea</span> Class of single-celled organisms

The Litostomatea are a class of ciliates. The group consists of three subclasses: Haptoria, Trichostomatia and Rhynchostomatia. Haptoria includes mostly carnivorous forms such as Didinium, a species of which preys primarily on the ciliate Paramecium. Trichostomatia (trichostomes) are mostly endosymbionts in the digestive tracts of vertebrates. These include the species Balantidium coli, which is the only ciliate parasitic in humans. The group Rhynchostomatia includes two free-living orders previously included among the Haptoria, but now known to be genetically distinct from them, the Dileptida and the Tracheliida.

<i>Paramecium</i> Genus of unicellular ciliates, commonly studied as a representative of the ciliate group

Paramecium is a genus of eukaryotic, unicellular ciliates, commonly studied as a model organism of the ciliate group. Paramecia are widespread in freshwater, brackish, and marine environments and are often abundant in stagnant basins and ponds. Because some species are readily cultivated and easily induced to conjugate and divide, they have been widely used in classrooms and laboratories to study biological processes. The usefulness of Paramecium as a model organism has caused one ciliate researcher to characterize it as the "white rat" of the phylum Ciliophora.

<span class="mw-page-title-main">Hymenostome</span> Order of single-celled organisms

The hymenostomes are an order of ciliate protozoa. Most are free-living in freshwater, such as the commonly studied genus Tetrahymena, but some are parasitic on fish or aquatic invertebrates. Among these is the important species Ichthyophthirius multifiliis, a common cause of death in aquaria and fish farms.

<span class="mw-page-title-main">Phyllopharyngea</span> Class of single-celled organisms

The Phyllopharyngea are a class of ciliates, some of which are extremely specialized. Motile cells typically have cilia restricted to the ventral surface, or some part thereof, arising from monokinetids with a characteristic ultrastructure. In both chonotrichs and suctoria, however, only newly formed cells are motile and the sessile adults have undergone considerable modifications of form and appearance. Chonotrichs, found mainly on crustaceans, are vase-shaped, with cilia restricted to a funnel leading down into the mouth. Mature suctorians lack cilia altogether, and initially were not classified as ciliates.

<span class="mw-page-title-main">Colpodea</span> Class of protists in the ciliates phylum

The Colpodea are a class of ciliates, of about 200 species common in freshwater and soil habitats. The body cilia are typically uniform, and are supported by dikinetids of characteristic structure, with cilia on both kinetosomes. The mouth may be apical or ventral, with more or less prominent associated polykinetids. Many are asymmetrical, the cells twisting sideways and then untwisting again prior to division, which often takes place within cysts. Colpoda, a kidney-shaped ciliate common in organic rich conditions, is representative.

<span class="mw-page-title-main">Hypotrich</span> Subclass of single-celled organisms


The hypotrichs are a group of ciliated protozoa, common in fresh water, salt water, soil and moss. Hypotrichs possess compound ciliary organelles called "cirri," which are made up of thick tufts of cilia, sparsely distributed on the ventral surface of the cell. The multiple fused cilia which form a cirrus function together as a unit, enabling the organism to crawl along solid substrates such as submerged debris or sediments. Hypotrichs typically possess a large oral aperture, bordered on one side by a wreath or collar of membranelles, forming an "adoral zone of membranelles," or AZM.

<span class="mw-page-title-main">Stichotrich</span> Historic group of single-celled organisms

The stichotrichs were a proposed group of ciliates, in the class Spirotrichea. In a classification system proposed by Eugene Small and Denis Lynn in 1985, Stichotrichia formed a subclass containing four orders: Stichotrichida, Urostylida, Sporadotrichida and Plagiotomida. Although the group was made up of species traditionally classified among the "hypotrichs"--ciliates possessing compound ciliary organelles called cirri--it excluded euplotid ciliates such as Euplotes and Diophrys, which were placed in the subclass Hypotrichia. In later classifications proposed by Denis Lynn, Stichotrichia omits the order Plagiotomida.

<span class="mw-page-title-main">Anthozoa</span> Class of cnidarians without a medusa stage

Anthozoa is a class of marine invertebrates which includes the sea anemones, stony corals and soft corals. Adult anthozoans are almost all attached to the seabed, while their larvae can disperse as part of the plankton. The basic unit of the adult is the polyp; this consists of a cylindrical column topped by a disc with a central mouth surrounded by tentacles. Sea anemones are mostly solitary, but the majority of corals are colonial, being formed by the budding of new polyps from an original, founding individual. Colonies are strengthened by calcium carbonate and other materials and take various massive, plate-like, bushy or leafy forms.

<i>Stylonychia</i> Genus of single-celled organisms

Stylonychia is a genus of ciliates, in the subclass Hypotrichia. Species of Stylonychia are very common in fresh water and soil, and may be found on filamentous algae, surface films, and among particles of sediment. Like other Hypotrichs, Stylonychia has cilia grouped into membranelles alongside the mouth and cirri over the body. It is distinguished partly by long cirri at the posterior, usually a cluster of three. The largest can just be seen at a 25x magnification, and the smallest can just be seen at a 450x magnification.

<span class="mw-page-title-main">Ciliate</span> Taxon of protozoans with hair-like organelles called cilia

The ciliates are a group of alveolates characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different undulating pattern than flagella. Cilia occur in all members of the group and are variously used in swimming, crawling, attachment, feeding, and sensation.

<i>Euplotes</i> Genus of single-celled organisms

Euplotes is a genus of ciliates in the subclass Euplotia. Species are widely distributed in marine and freshwater environments, as well as soil and moss. Most members of the genus are free-living, but two species have been recorded as commensal organisms in the digestive tracts of sea urchins.

<span class="mw-page-title-main">Mobilida</span> Order of protists belonging to the ciliates phylum

Mobilida is a group of parasitic or symbiotic peritrich ciliates, comprising more than 280 species. Mobilids live on or within a wide variety of aquatic organisms, including fish, amphibians, molluscs, cnidarians, flatworms and other ciliates, attaching to their host organism by means of an aboral adhesive disk. Some mobilid species are pathogens of wild or farmed fish, causing severe and economically damaging diseases such as trichodinosis.

<i>Tracheloraphis</i> Genus of single-celled organisms

Tracheloraphis is a genus of ciliates in the family Trachelocercidae.

References

  1. Puytorac, P. de; Batisse, A.; Bohatier, J.; Corliss, J.O.; Deroux, G.; Didier, P.; Dragesco, J.; Fryd-Versavel, G.; Grain, J.; Grolière, C.-A.; Hovasse, R.; Iftode, F.; Laval, M.; Rogue, M.; Savoie, A.; Tuffrau, M. (1974). "Proposition d'une classification du phylum Ciliophora Doflein, 1901". Comptes Rendus de l'Académie des Sciences de Paris. 278: 2799–2802.
  2. WoRMS (2019). Oligohymenophorea. Accessed at: http://www.marinespecies.org/aphia.php?p=taxdetails&id=162991 on 2019-01-07