Color wheel

Last updated

Gradient RGB/CMY color wheel Linear RGB color wheel.png
Gradient RGB/CMY color wheel
Seven-color and twelve-color color circles from 1708, attributed to Claude Boutet Boutet 1708 color circles.jpg
Seven-color and twelve-color color circles from 1708, attributed to Claude Boutet
Wilhelm von Bezold's 1874 Farbentafel Bezold Farbentafel 1874.jpg
Wilhelm von Bezold's 1874 Farbentafel

A color wheel or color circle [1] is an abstract illustrative organization of color hues around a circle, which shows the relationships between primary colors, secondary colors, tertiary colors etc.

Contents

Some sources use the terms color wheel and color circle interchangeably; [2] [3] however, one term or the other may be more prevalent in certain fields or certain versions as mentioned above. For instance, some reserve the term color wheel for mechanical rotating devices, such as color tops, filter wheels or the Newton disc. Others classify various color wheels as color disc, color chart, and color scale varieties. [4]

History

In his book Opticks , Isaac Newton presented a color circle to illustrate the relations between these colors. [5] The original color circle of Isaac Newton showed only the spectral hues and was provided to illustrate a rule for the color of mixtures of lights, that these could be approximately predicted from the center of gravity of the numbers of "rays" of each spectral color present (represented in his diagram by small circles). [6] The divisions of Newton's circle are of unequal size, being based on the intervals of a Dorian musical scale. [7] Most later color circles include the purples, however, between red and violet, and have equal-sized hue divisions. [8] Color scientists and psychologists often use the additive primaries, red, green, and blue; and often refer to their arrangement around a circle as a color circle as opposed to a color wheel. [9]

Thomas Young postulated that the eye contains receptors that respond to three different primary sensations, or spectra of light. James Clerk Maxwell showed that all hues, and almost all colors, can be created from three primary colors such as red, green, and blue, if they are mixed in the right proportions. Goethe's Theory of Colours provided the first systematic study of the physiological effects of color (1810). His observations on the effect of opposed colors led him to a symmetric arrangement of his color wheel anticipating Ewald Hering's opponent color theory (1872).

... for the colours diametrically opposed to each other ... are those that reciprocally evoke each other in the eye.

Goethe, Theory of Colours

Colors of the color wheel

Trichromatic model

Most color wheels are based on three primary colors, three secondary colors, and the six intermediates formed by mixing a primary with a secondary, known as tertiary colors, for a total of 12 main divisions; some add more intermediates, for 24 named colors. They make use of the trichromatic model of color.

Subtractive

A 1908 color wheel with red, green, and violet "plus colors" and magenta, yellow, and cyan blue "minus colors". RGV color wheel 1908.png
A 1908 color wheel with red, green, and violet "plus colors" and magenta, yellow, and cyan blue "minus colors".

The typical artists' paint or pigment color wheel includes the blue, red, and yellow primary colors. The corresponding secondary colors are green, orange, and violet or purple. The tertiary colors are green-yellow, yellow-orange, orange-red, red-violet/purple, purple/violet-blue and blue-green.

Non-digital visual artists typically use red, yellow, and blue primaries (RYB color model) arranged at three equally spaced points around their color wheel. [10] Printers and others who use modern subtractive color methods and terminology use magenta, yellow, and cyan as subtractive primaries. Intermediate and interior points of color wheels and circles represent color mixtures. In a paint or subtractive color wheel, the "center of gravity" is usually (but not always [11] ) black, representing all colors of light being absorbed.

Additive

A color wheel based on RGB (red, green, blue) additive primaries has cyan, magenta, and yellow secondaries. Alternatively, the same arrangement of colors around a circle can be described as based on cyan, magenta, and yellow subtractive primaries, with red, green, and blue being secondaries. Sometimes a RGV (red, green, violet) triad is used instead. In an additive color circle, the center is white or gray, indicating a mixture of different wavelengths of light (all wavelengths, or two complementary colors, for example).

A color wheel based on HSV, labeled with HTML color keywords. Hsv color circle.svg
A color wheel based on HSV, labeled with HTML color keywords.

The HSL and HSV color spaces are simple geometric transformations of the RGB cube into cylindrical form. The outer top circle of the HSV cylinder – or the outer middle circle of the HSL cylinder – can be thought of as a color wheel. There is no authoritative way of labelling the colors in such a color wheel, but the six colors which fall at the corners of the RGB cube are given names in the X11 color list, and are named keywords in HTML. [12]

Opponent process model

Some color wheels are based on the four opponent process colors - red, yellow, blue and green. This includes those of the Natural Color System.

The color circle and color vision

sRGB rendering of the spectrum of visible light Linear visible spectrum.svg
sRGB rendering of the spectrum of visible light
Color Wavelength
(nm)
Frequency
(THz)
Photon energy
(eV)
   violet
380–450670–7902.75–3.26
   blue
450–485620–6702.56–2.75
   cyan
485–500600–6202.48–2.56
   green
500–565530–6002.19–2.48
   yellow
565–590510–5302.10–2.19
   orange
590–625480–5101.98–2.10
   red
625–750400–4801.65–1.98
A 1917 four-way color circle related to the color opponent process. Opponent color circle 1917.png
A 1917 four-way color circle related to the color opponent process.

A color circle based on spectral wavelengths appears with red at one end of the spectrum and is 100% mixable violet at the other. A wedge-shaped gap represents colors that have no unique spectral frequency. These extra-spectral colors, the purples, form from an additive mixture of colors from the ends of the spectrum.

In normal human vision, wavelengths of between about 400 nm and 700 nm are represented by this incomplete circle, with the longer wavelengths equating to the red end of the spectrum. Complement colors are located directly opposite each other on this wheel. These complement colors are not identical to colors in pigment mixing (such as are used in paint), but when lights are additively mixed in the correct proportions appear as a neutral grey or white. [13]

The color circle is used for, among other purposes, illustrating additive color mixture. Combining two colored lights from different parts of the spectrum will produce a third color that appears like a light from another part of the spectrum, even though dissimilar wavelengths are involved. This type of color matching is known as metameric matching. [14] Thus, a combination of green and red light will produce the color yellow in apparent hue. The newly formed color lies between the two original colors on the color circle.

Objects may be viewed under a variety of different lighting conditions. The human visual system is able to adapt to these differences by chromatic adaptation. This aspect of the visual system is relatively easy to mislead, and optical illusions relating to color are therefore a common phenomenon. The color circle is a useful tool for examining these illusions.

Arranging spectral colors in a circle to predict admixture of light stems from work by Sir Isaac Newton. Newton's calculation of the resulting color involves three steps: First, mark on the color circle the constituent colors according to their relative weight. Second, find the barycenter of these differently weighted colors. Third, interpret the radial distance (from the center of the circle to the barycenter) as the saturation of the color, and the azimuthal position on the circle as the hue of the color. Thus, Newton's color circle is a predecessor of the modern, horseshoe-shaped CIE color diagram.

The psychophysical theory behind the color circle dates to the early color triangle of Thomas Young, whose work was later extended by James Clerk Maxwell and Hermann von Helmholtz.

Color wheels and paint color mixing

Ignaz Schiffermuller, Versuch eines Farbensystems (Vienna, 1772), plate I. Color wheels can be used to create pleasing color schemes. 020 schiffermueller1.jpg
Ignaz Schiffermüller, Versuch eines Farbensystems (Vienna, 1772), plate I. Color wheels can be used to create pleasing color schemes.

There is no straight-line relationship between colors mixed in pigment, which vary from medium to medium. With a psychophysical color circle, however, the resulting hue of any mixture of two colored light sources can be determined simply by the relative brightness and wavelength of the two lights. [14] A similar calculation cannot be performed with two paints. As such, a painter's color wheel is indicative rather than predictive, being used to compare existing colors rather than calculate exact colors of mixtures. Because of differences relating to the medium, different color wheels can be created according to the type of paint or other medium used, and many artists make their own individual color wheels. These often contain only blocks of color rather than the gradation between tones that is characteristic of the color circle. [15]

Color wheel software

A number of interactive color wheel applications are available both on the Internet and as desktop applications. These programs are used by artists and designers for picking colors for a design.

Color schemes

Moses Harris, in his book The Natural System of Colours (1776), presented this color palette. Moses Harris, The Natural System of Colours.jpg
Moses Harris, in his book The Natural System of Colours (1776), presented this color palette.

In color theory, a color scheme is the choice of colors used in design for a range of media. For example, the use of a white background with black text is an example of a common default color scheme in web design.

Color schemes are logical combinations of colors on the color wheel. Color schemes are used to create style and appeal. Colors that create an aesthetic feeling together commonly appear together in color schemes. A basic color scheme uses two colors that look appealing together. More advanced color schemes involve several colors in combination, usually based around a single color—for example, text with such colors as red, yellow, orange and light blue arranged together on a black background in a magazine article. Color schemes can also contain different shades of a single color; for example, a color scheme that mixes different shades of green, ranging from very light (almost white) to very dark.

Complementary colors are two colors directly across from each other; for example, red and green are complementary colors. Tetradic color palettes use four colors, a pair of complementary color pairs. For example, one could use yellow, purple, red, and green. Tetrad colors can be found by putting a square or rectangle on the color wheel. An analogous color scheme is made up of colors next to each other on the wheel. For example, red, orange, and yellow are analogous colors. Monochromatic colors are different shades of the same color. For example, light blue, indigo, and cyan blue. Complementary colors are colors across from each other on a color wheel. For example, blue and orange. Triadic colors are colors that are evenly across from each other, in a triangle over the color wheel. For example, the primary colors red, yellow, and blue are triadic colors. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Color</span> Visual perception of the light spectrum

Color or colour is the visual perception based on the electromagnetic spectrum. Though color is not an inherent property of matter, color perception is related to an object's light absorption, reflection, emission spectra and interference. For most humans, colors are perceived in the visible light spectrum with three types of cone cells (trichromacy). Other animals may have a different number of cone cell types or have eyes sensitive to different wavelength, such as bees that can distinguish ultraviolet, and thus have a different color sensitivity range. Animal perception of color originates from different light wavelength or spectral sensitivity in cone cell types, which is then processed by the brain.

<span class="mw-page-title-main">Cyan</span> Color visible between blue and green on the visible spectrum; subtractive (CMY) primary color

Cyan is the color between blue and green on the visible spectrum of light. It is evoked by light with a predominant wavelength between 490 and 520 nm, between the wavelengths of green and blue.

<span class="mw-page-title-main">Indigo</span> Shade of blue

Indigo is a term used for a number of hues in the region of blue. The word comes from the ancient dye of the same name. The term "indigo" can refer to the color of the dye, various colors of fabric dyed with indigo dye, a spectral color, one of the seven colors of the rainbow, or a region on the color wheel, and can include various shades of blue, ultramarine, and green-blue. Since the web era, the term has also been used for various purple and violet hues identified as "indigo", based on use of the term "indigo" in HTML web page specifications.

<span class="mw-page-title-main">RGB color model</span> Color model based on red, green, and blue

The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

<span class="mw-page-title-main">Primary color</span> Sets of colors that can be mixed to produce gamut of colors

A set of primary colors or primary colours consists of colorants or colored lights that can be mixed in varying amounts to produce a gamut of colors. This is the essential method used to create the perception of a broad range of colors in, e.g., electronic displays, color printing, and paintings. Perceptions associated with a given combination of primary colors can be predicted by an appropriate mixing model that reflects the physics of how light interacts with physical media, and ultimately the retina.

<span class="mw-page-title-main">Magenta</span> Color

Magenta is a purplish-red color. On color wheels of the RGB (additive) and CMY (subtractive) color models, it is located precisely midway between red and blue. It is one of the four colors of ink used in color printing by an inkjet printer, along with yellow, cyan, and black to make all the other colors. The tone of magenta used in printing, printer's magenta, is redder than the magenta of the RGB (additive) model, the former being closer to rose.

<span class="mw-page-title-main">Hue</span> Property of a color

In color theory, hue is one of the main properties of a color, defined technically in the CIECAM02 model as "the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, orange, yellow, green, blue, violet," within certain theories of color vision.

The color of chemicals is a physical property of chemicals that in most cases comes from the excitation of electrons due to an absorption of energy performed by the chemical. What is seen by the eye is not the color absorbed, but the complementary color from the removal of the absorbed wavelengths. This spectral perspective was first noted in atomic spectroscopy.

<span class="mw-page-title-main">Complementary colors</span> Pairs of colors losing hue when combined

Complementary colors are pairs of colors which, when combined or mixed, cancel each other out by producing a grayscale color like white or black. When placed next to each other, they create the strongest contrast for those two colors. Complementary colors may also be called "opposite colors".

Color theory, or more specifically traditional color theory, is the historical body of knowledge describing the behavior of colors, namely in color mixing, color contrast effects, color harmony, color schemes and color symbolism. Modern color theory is generally referred to as Color science. While there is no clear distinction in scope, traditional color theory tends to be more subjective and have artistic applications, while color science tends to be more objective and have functional applications, such as in chemistry, astronomy or color reproduction. Color theory dates back at least as far as Aristotle's treatise On Colors. A formalization of "color theory" began in the 18th century, initially within a partisan controversy over Isaac Newton's theory of color and the nature of primary colors. By the end of the 19th century, a schism had formed between traditional color theory and color science.

<span class="mw-page-title-main">Index of color-related articles</span>

This is an index of color topic-related articles.

<span class="mw-page-title-main">Subtractive color</span> Light passing through successive filters

Subtractive color or subtractive color mixing predicts the spectral power distribution of light after it passes through successive layers of partially absorbing media. This idealized model is the essential principle of how dyes and pigments are used in color printing and photography, where the perception of color is elicited after white light passes through microscopic "stacks" of partially absorbing media allowing some wavelengths of light to reach the eye and not others, and also in painting, whether the colors are mixed or applied in successive layers.

<span class="mw-page-title-main">Secondary color</span> Color made by mixing two primary colors

A secondary color is a color made by mixing two primary colors of a given color model in even proportions. Combining two secondary colors in the same manner produces a tertiary color. Secondary colors are special in traditional color theory, but have no special meaning in color science.

<span class="mw-page-title-main">Spectral color</span> Color evoked by a single wavelength of light in the visible spectrum

A spectral color is a color that is evoked by monochromatic light, i.e. either a spectral line with a single wavelength or frequency of light in the visible spectrum, or a relatively narrow spectral band. Every wave of visible light is perceived as a spectral color; when viewed as a continuous spectrum, these colors are seen as the familiar rainbow. Non-spectral colors are evoked by a combination of spectral colors.

A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components. When this model is associated with a precise description of how the components are to be interpreted, taking account of visual perception, the resulting set of colors is called "color space."

<span class="mw-page-title-main">Color mixing</span> Producing colors by combining the primary or secondary colors in different amounts

There are three types of color mixing models, depending on the relative brightness of the resultant mixture: additive, subtractive, and average. In these models, mixing black and white will yield white, black and gray, respectively. Physical mixing processes, e.g. mixing light beams or oil paints, will follow one or a hybrid of these 3 models. Each mixing model is associated with several color models, depending on the approximate primary colors used. The most common color models are optimized to human trichromatic color vision, therefore comprising three primary colors.

<span class="mw-page-title-main">Line of purples</span> Edge of visible color

In color theory, the line of purples or purple boundary is the locus on the edge of the chromaticity diagram formed between extreme spectral red and violet. Except for these endpoints of the line, colors on the line are non-spectral. Rather, every color on the line is a unique mixture in a ratio of fully saturated red and fully saturated violet, the two spectral color endpoints of visibility on the spectrum of pure hues. Colors on the line and spectral colors are the only ones that are fully saturated in the sense that, for any point on the line, no other possible color being a mixture of red and violet is more saturated than it.

<span class="mw-page-title-main">Shades of blue</span> Variety of the color blue

Varieties of the color blue may differ in hue, chroma, or lightness, or in two or three of these qualities. Variations in value are also called tints and shades, a tint being a blue or other hue mixed with white, a shade being mixed with black. A large selection of these colors are shown below.

This article provides introductory information about the RGB, HSV, and HSL color models from a computer graphics perspective. An introduction to colors is also provided to support the main discussion.

References

  1. Morton, J.L. "Basic Color Theory". Color Matters.
  2. Simon Jennings (2003). Artist's Color Manual: The Complete Guide to Working With Color . Chronicle Books. p.  26. ISBN   0-8118-4143-X. color-wheel color-circle.
  3. Faber Birren (1934). Color Dimensions: Creating New Principles of Color and a Practical Equation in Color Definition. Chicago: The Crimson Press. ISBN   1-4286-5179-9.[ permanent dead link ]
  4. Joseph Anthony Gillet and William James Rolfe (1881). Elements of Natural Philosophy: For the Use of Schools and Academies. New York: Potter, Ainsworth. p.  186. color-disc.
  5. Newton, Isaac (1730). Opticks: Or, A Treatise of the Reflections, Refractions, Inflections and Colours of Light. William Innys at the West-End of St. Paul's. pp. 154–158.
  6. Newton, Isaac (1704). Opticks. pp. 114–117.
  7. Briggs, David. "Newton's hue system".
  8. Steven K. Shevell (2003). The Science of Color. Elsevier. ISBN   0-444-51251-9.
  9. Linda Leal (1994). The Essentials of Psychology . Research & Education Assoc. p.  26. ISBN   0-87891-930-9. color-circle psychology red green blue.
  10. Kathleen Lochen Staiger (2006). The Oil Painting Course You've Always Wanted: Guided Lessons for Beginners. Watson–Guptill. ISBN   0-8230-3259-0.
  11. Martha Gill (2000). Color Harmony Pastels: A Guidebook for Creating Great Color Combinations. Rockport Publishers. ISBN   1-56496-720-4.
  12. "Basic HTML data types". HTML 4.01 Specification. W3C. 24 December 1999.
  13. Krech, D., Crutchfield, R.S., Livson, N., Wilson, W.A. jr., Parducci, A. (1982) Elements of psychology (4th ed.). New York: Alfred A. Knopf. pp. 108–109.
  14. 1 2 Schiffman, H.R. (1990) Sensation and perception: An integrated approach (3rd ed.). New York: John Wiley & Sons, pp. 252–253.
  15. Rodwell, J. (1987) The complete watercolour artist. London: Paul Press, pp. 94–95.
  16. How to create color palettes