Spectral power distribution

Last updated
CIE standard illuminant spectral power distribution comparisons referenced to the human visual system photopic response NormSPD with eye.png
CIE standard illuminant spectral power distribution comparisons referenced to the human visual system photopic response

In radiometry, photometry, and color science, a spectral power distribution (SPD) measurement describes the power per unit area per unit wavelength of an illumination (radiant exitance). More generally, the term spectral power distribution can refer to the concentration, as a function of wavelength, of any radiometric or photometric quantity (e.g. radiant energy, radiant flux, radiant intensity, radiance, irradiance, radiant exitance, radiosity, luminance, luminous flux, luminous intensity, illuminance, luminous emittance). [1] [2] [3] [4]

Contents

Knowledge of the SPD is crucial for optical-sensor system applications. Optical properties such as transmittance, reflectivity, and absorbance as well as the sensor response are typically dependent on the incident wavelength. [3]

Physics

Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write:

where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m2 = kg·m−1·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m2); and λ is the wavelength (SI unit: meter, m). (Note that it is more convenient to express the wavelength of light in terms of nanometers; spectral exitance would then be expressed in units of W·m−2·nm−1.) The approximation is valid when the area and wavelength interval are small. [5]

Relative SPD

Characteristic spectral power distributions (SPDs) for an incandescent lamp (left) and a fluorescent lamp (right). The horizontal axes are in nanometers and the vertical axes show relative intensity in arbitrary units. Spectral Power Distributions.png
Characteristic spectral power distributions (SPDs) for an incandescent lamp (left) and a fluorescent lamp (right). The horizontal axes are in nanometers and the vertical axes show relative intensity in arbitrary units.

The ratio of spectral concentration (irradiance or exitance) at a given wavelength to the concentration of a reference wavelength provides the relative SPD. [4] This can be written as:

For instance, the luminance of lighting fixtures and other light sources are handled separately, a spectral power distribution may be normalized in some manner, often to unity at 555 or 560 nanometers, coinciding with the peak of the eye's luminosity function. [2] [6]

Responsivity

The SPD can be used to determine the response of a sensor at a specified wavelength. This compares the output power of the sensor to the input power as a function of wavelength. [7] This can be generalized in the following formula:

Knowing the responsitivity is beneficial for determination of illumination, interactive material components, and optical components to optimize performance of a system's design.

Source SPD and matter

Figure showing the greater proportion of blue light scattered by the atmosphere relative to red light. Rayleigh sunlight scattering.svg
Figure showing the greater proportion of blue light scattered by the atmosphere relative to red light.

The spectral power distribution over the visible spectrum from a source can have varying concentrations of relative SPDs. The interactions between light and matter affect the absorption and reflectance properties of materials and subsequently produces a color that varies with source illumination. [8]

For example, the relative spectral power distribution of the sun produces a white appearance if observed directly, but when the sunlight illuminates the Earth's atmosphere the sky appears blue under normal daylight conditions. This stems from the optical phenomenon called Rayleigh scattering which produces a concentration of shorter wavelengths and hence the blue color appearance. [3]

Source SPD and color appearance

Color temperature comparison of common electric lamps Incand-3500-5500-color-temp-comparison.png
Color temperature comparison of common electric lamps

The human visual response relies on trichromacy to process color appearance. While the human visual response integrates over all wavelengths, the relative spectral power distribution will provide color appearance modeling information as the concentration of wavelength band(s) will become the primary contributors to the perceived color. [8]

This becomes useful in photometry and colorimetry as the perceived color changes with source illumination and spectral distribution and coincides with metamerisms where an object's color appearance changes. [8]

The spectral makeup of the source can also coincide with color temperature producing differences in color appearance due to the source's temperature. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Candela</span> SI unit of luminous intensity

The candela is the unit of luminous intensity in the International System of Units (SI). It measures luminous power per unit solid angle emitted by a light source in a particular direction. Luminous intensity is analogous to radiant intensity, but instead of simply adding up the contributions of every wavelength of light in the source's spectrum, the contribution of each wavelength is weighted by the luminous efficiency function, the model of the sensitivity of the human eye to different wavelengths, standardized by the CIE and ISO. A common wax candle emits light with a luminous intensity of roughly one candela. If emission in some directions is blocked by an opaque barrier, the emission would still be approximately one candela in the directions that are not obscured.

<span class="mw-page-title-main">Optical depth</span> Physics concept

In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to transmitted radiant power through a material. Thus, the larger the optical depth, the smaller the amount of transmitted radiant power through the material. Spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged.

<span class="mw-page-title-main">Radiometry</span> Techniques for measuring electromagnetic radiation

Radiometry is a set of techniques for measuring electromagnetic radiation, including visible light. Radiometric techniques in optics characterize the distribution of the radiation's power in space, as opposed to photometric techniques, which characterize the light's interaction with the human eye. The fundamental difference between radiometry and photometry is that radiometry gives the entire optical radiation spectrum, while photometry is limited to the visible spectrum. Radiometry is distinct from quantum techniques such as photon counting.

<span class="mw-page-title-main">Reflectance</span> Capacity of an object to reflect light

The reflectance of the surface of a material is its effectiveness in reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at the boundary. Reflectance is a component of the response of the electronic structure of the material to the electromagnetic field of light, and is in general a function of the frequency, or wavelength, of the light, its polarization, and the angle of incidence. The dependence of reflectance on the wavelength is called a reflectance spectrum or spectral reflectance curve.

<span class="mw-page-title-main">Luminous efficiency function</span> Description of the average spectral sensitivity of human visual perception of brightness

A luminous efficiency function or luminosity function represents the average spectral sensitivity of human visual perception of light. It is based on subjective judgements of which of a pair of different-colored lights is brighter, to describe relative sensitivity to light of different wavelengths. It is not an absolute reference to any particular individual, but is a standard observer representation of visual sensitivity of theoretical human eye. It is valuable as a baseline for experimental purposes, and in colorimetry. Different luminous efficiency functions apply under different lighting conditions, varying from photopic in brightly lit conditions through mesopic to scotopic under low lighting conditions. When not specified, the luminous efficiency function generally refers to the photopic luminous efficiency function.

In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.

<span class="mw-page-title-main">Photometry (optics)</span> Science of the measurement of visible light

Photometry is a branch of science that deals with the measurement of light in terms of its perceived brightness to the human eye. It is concerned with quantifying the amount of light that is emitted, transmitted, or received by an object or a system.

Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample ". Alternatively, for samples which scatter light, absorbance may be defined as "the negative logarithm of one minus absorptance, as measured on a uniform sample". The term is used in many technical areas to quantify the results of an experimental measurement. While the term has its origin in quantifying the absorption of light, it is often entangled with quantification of light which is “lost” to a detector system through other mechanisms. What these uses of the term tend to have in common is that they refer to a logarithm of the ratio of a quantity of light incident on a sample or material to that which is detected after the light has interacted with the sample.

<span class="mw-page-title-main">Transmittance</span> Effectiveness of a material in transmitting radiant energy

In optical physics, transmittance of the surface of a material is its effectiveness in transmitting radiant energy. It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is the ratio of the transmitted to incident electric field.

In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre. It is a directional quantity: the radiance of a surface depends on the direction from which it is being observed.

In radiometry, irradiance is the radiant flux received by a surface per unit area. The SI unit of irradiance is the watt per square metre (W⋅m−2). The CGS unit erg per square centimetre per second (erg⋅cm−2⋅s−1) is often used in astronomy. Irradiance is often called intensity, but this term is avoided in radiometry where such usage leads to confusion with radiant intensity. In astrophysics, irradiance is called radiant flux.

<span class="mw-page-title-main">Photometer</span> Instrument to measure light intensity

A photometer is an instrument that measures the strength of electromagnetic radiation in the range from ultraviolet to infrared and including the visible spectrum. Most photometers convert light into an electric current using a photoresistor, photodiode, or photomultiplier.

In radiometry, radiant intensity is the radiant flux emitted, reflected, transmitted or received, per unit solid angle, and spectral intensity is the radiant intensity per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. These are directional quantities. The SI unit of radiant intensity is the watt per steradian, while that of spectral intensity in frequency is the watt per steradian per hertz and that of spectral intensity in wavelength is the watt per steradian per metre —commonly the watt per steradian per nanometre. Radiant intensity is distinct from irradiance and radiant exitance, which are often called intensity in branches of physics other than radiometry. In radio-frequency engineering, radiant intensity is sometimes called radiation intensity.

A spectroradiometer is a light measurement tool that is able to measure both the wavelength and amplitude of the light emitted from a light source. Spectrometers discriminate the wavelength based on the position the light hits at the detector array allowing the full spectrum to be obtained with a single acquisition. Most spectrometers have a base measurement of counts which is the un-calibrated reading and is thus impacted by the sensitivity of the detector to each wavelength. By applying a calibration, the spectrometer is then able to provide measurements of spectral irradiance, spectral radiance and/or spectral flux. This data is also then used with built in or PC software and numerous algorithms to provide readings or Irradiance (W/cm2), Illuminance, Radiance (W/sr), Luminance (cd), Flux, Chromaticity, Color Temperature, Peak and Dominant Wavelength. Some more complex spectrometer software packages also allow calculation of PAR μmol/m2/s, Metamerism, and candela calculations based on distance and include features like 2- and 20-degree observer, baseline overlay comparisons, transmission and reflectance.

Luminous efficacy is a measure of how well a light source produces visible light. It is the ratio of luminous flux to power, measured in lumens per watt in the International System of Units (SI). Depending on context, the power can be either the radiant flux of the source's output, or it can be the total power consumed by the source. Which sense of the term is intended must usually be inferred from the context, and is sometimes unclear. The former sense is sometimes called luminous efficacy of radiation, and the latter luminous efficacy of a light source or overall luminous efficacy.

<span class="mw-page-title-main">Radiant flux</span> Measure of radiant energy over time

In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant flux is the watt (W), one joule per second, while that of spectral flux in frequency is the watt per hertz and that of spectral flux in wavelength is the watt per metre —commonly the watt per nanometre.

In radiometry, radiant exitance or radiant emittance is the radiant flux emitted by a surface per unit area, whereas spectral exitance or spectral emittance is the radiant exitance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. This is the emitted component of radiosity. The SI unit of radiant exitance is the watt per square metre, while that of spectral exitance in frequency is the watt per square metre per hertz (W·m−2·Hz−1) and that of spectral exitance in wavelength is the watt per square metre per metre (W·m−3)—commonly the watt per square metre per nanometre. The CGS unit erg per square centimeter per second is often used in astronomy. Radiant exitance is often called "intensity" in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.

In radiometry, radiosity is the radiant flux leaving a surface per unit area, and spectral radiosity is the radiosity of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiosity is the watt per square metre, while that of spectral radiosity in frequency is the watt per square metre per hertz (W·m−2·Hz−1) and that of spectral radiosity in wavelength is the watt per square metre per metre (W·m−3)—commonly the watt per square metre per nanometre. The CGS unit erg per square centimeter per second is often used in astronomy. Radiosity is often called intensity in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.

In radiometry, radiant exposure or fluence is the radiant energy received by a surface per unit area, or equivalently the irradiance of a surface, integrated over time of irradiation, and spectral exposure is the radiant exposure per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant exposure is the joule per square metre, while that of spectral exposure in frequency is the joule per square metre per hertz and that of spectral exposure in wavelength is the joule per square metre per metre —commonly the joule per square metre per nanometre.

In radiometry, radiant energy density is the radiant energy per unit volume. The SI unit of radiant energy density is the joule per cubic metre (J/m3).

References

  1. Mark D. Fairchild (2005). Color Appearance Models. John Wiley and Sons. ISBN   0-470-01216-1.
  2. 1 2 Michael R. Peres (2007). The Focal Encyclopedia of Photography. Focal Press. ISBN   978-0-240-80740-9.
  3. 1 2 3 William Ross McCluney (1994). Introduction to Radiometry and Photometry. Boston: Artech House. ISBN   0890066787.
  4. 1 2 3 Franc C. Grum (1979). Optical Radiation Measurements (v. 1). New York: Academic Press. ISBN   0123049016.
  5. Clair L. Wyatt (1987). Radiometric System Design. New York: Macmillan. ISBN   0029488001.
  6. Wyszecki, Günter; Stiles, Walter Stanley (1982). Color Science: Concepts and Methods; Quantitative Data and Formulae (second ed.). New York: Wiley. ISBN   978-0-471-39918-6.
  7. Robert W. Boyd (1983). Radiometry and the Detection of Optical Radiation. New York: Wiley. ISBN   047186188X.
  8. 1 2 3 William David Wright (1969). The Measurement of Colour. New York: Van Nostrand Reinhold Co.