Fundamental theorem of calculus

Last updated

The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). The two operations are inverses of each other apart from a constant value which depends on where one starts to compute area.

Contents

The first part of the theorem, the first fundamental theorem of calculus, states that for a continuous function f , an antiderivative or indefinite integral F can be obtained as the integral of f over an interval with a variable upper bound. [1]

Conversely, the second part of the theorem, the second fundamental theorem of calculus, states that the integral of a function f over a fixed interval is equal to the change of any antiderivative F between the ends of the interval. This greatly simplifies the calculation of a definite integral provided an antiderivative can be found by symbolic integration, thus avoiding numerical integration.

History

The fundamental theorem of calculus relates differentiation and integration, showing that these two operations are essentially inverses of one another. Before the discovery of this theorem, it was not recognized that these two operations were related. Ancient Greek mathematicians knew how to compute area via infinitesimals, an operation that we would now call integration. The origins of differentiation likewise predate the fundamental theorem of calculus by hundreds of years; for example, in the fourteenth century the notions of continuity of functions and motion were studied by the Oxford Calculators and other scholars. The historical relevance of the fundamental theorem of calculus is not the ability to calculate these operations, but the realization that the two seemingly distinct operations (calculation of geometric areas, and calculation of gradients) are actually closely related.

From the conjecture and the proof of the fundamental theorem of calculus, calculus as a unified theory of integration and differentiation is started. The first published statement and proof of a rudimentary form of the fundamental theorem, strongly geometric in character, [2] was by James Gregory (1638–1675). [3] [4] Isaac Barrow (1630–1677) proved a more generalized version of the theorem, [5] while his student Isaac Newton (1642–1727) completed the development of the surrounding mathematical theory. Gottfried Leibniz (1646–1716) systematized the knowledge into a calculus for infinitesimal quantities and introduced the notation used today.

Geometric meaning/Proof

The area shaded in red stripes is close to h times f(x). Alternatively, if the function A(x) were known, this area would be exactly A(x + h) - A(x). These two values are approximately equal, particularly for small h. FTC geometric.svg
The area shaded in red stripes is close to h times f(x). Alternatively, if the function A(x) were known, this area would be exactly A(x + h) − A(x). These two values are approximately equal, particularly for small h.

The first fundamental theorem may be interpreted as follows. Given a continuous function whose graph is plotted as a curve, one defines a corresponding "area function" such that A(x) is the area beneath the curve between 0 and x. The area A(x) may not be easily computable, but it is assumed to be well defined.

The area under the curve between x and x + h could be computed by finding the area between 0 and x + h, then subtracting the area between 0 and x. In other words, the area of this "strip" would be A(x + h) − A(x).

There is another way to estimate the area of this same strip. As shown in the accompanying figure, h is multiplied by f(x) to find the area of a rectangle that is approximately the same size as this strip. So:

This estimate becomes a perfect equality when h approaches 0:

Dividing by h on both sides, we get:

That is, the derivative of the area function A(x) exists and is equal to the original function f(x), so the area function is an antiderivative of the original function.

Thus, the derivative of the integral of a function (the area) is the original function, so that derivative and integral are inverse operations which reverse each other. This is the essence of the Fundamental Theorem.

Physical intuition

Intuitively, the fundamental theorem states that integration and differentiation are inverse operations which reverse each other.

The second fundamental theorem says that the sum of infinitesimal changes in a quantity (the integral of the derivative of the quantity) adds up to the net change in the quantity. To visualize this, imagine traveling in a car and wanting to know the distance traveled (the net change in position along the highway). You can see the velocity on the speedometer but cannot look out to see your location. Each second, you can find how far the car has traveled using distance = speed × time, that is, multiplying the current speed (in kilometers or miles per hour) by the time interval (1 second = hour). By summing up all these small steps, you can approximate the total distance traveled, in spite of not looking outside the car:

As becomes infinitesimally small, the summing up corresponds to integration. Thus, the integral of the velocity function (the derivative of position) computes how far the car has traveled (the net change in position).

The first fundamental theorem says that the value of any function is the rate of change (the derivative) of its integral from a fixed starting point up to any chosen end point. Continuing the above example using a velocity as the function, you can integrate it from the starting time up to any given time to obtain a distance function whose derivative is that velocity. (To obtain your highway-marker position, you would need to add your starting position to this integral and to take into account whether your travel was in the direction of increasing or decreasing mile markers.)

Formal statements

There are two parts to the theorem. The first part deals with the derivative of an antiderivative, while the second part deals with the relationship between antiderivatives and definite integrals.

First part

This part is sometimes referred to as the first fundamental theorem of calculus. [6]

Let f be a continuous real-valued function defined on a closed interval [a, b]. Let F be the function defined, for all x in [a, b], by

Then F is uniformly continuous on [a, b] and differentiable on the open interval (a, b), and

for all x in (a, b) so F is an antiderivative of f.

Corollary

Fundamental theorem of calculus (animation) Fundamental theorem of calculus (animation ).gif
Fundamental theorem of calculus (animation)

The fundamental theorem is often employed to compute the definite integral of a function for which an antiderivative is known. Specifically, if is a real-valued continuous function on and is an antiderivative of in , then

The corollary assumes continuity on the whole interval. This result is strengthened slightly in the following part of the theorem.

Second part

This part is sometimes referred to as the second fundamental theorem of calculus [7] or the Newton–Leibniz theorem.

Let be a real-valued function on a closed interval and a continuous function on which is an antiderivative of in :

If is Riemann integrable on then

The second part is somewhat stronger than the corollary because it does not assume that is continuous.

When an antiderivative of exists, then there are infinitely many antiderivatives for , obtained by adding an arbitrary constant to . Also, by the first part of the theorem, antiderivatives of always exist when is continuous.

Proof of the first part

For a given function f, define the function F(x) as

For any two numbers x1 and x1 + Δx in [a, b], we have

the latter equality resulting from the basic properties of integrals and the additivity of areas.

According to the mean value theorem for integration, there exists a real number such that

It follows that

and thus that

Taking the limit as and keeping in mind that one gets

that is,

according to the definition of the derivative, the continuity of f, and the squeeze theorem. [8]

Proof of the corollary

Suppose F is an antiderivative of f, with f continuous on [a, b]. Let

By the first part of the theorem, we know G is also an antiderivative of f. Since F′ − G′ = 0 the mean value theorem implies that FG is a constant function, that is, there is a number c such that G(x) = F(x)+c for all x in [a, b]. Letting x = a, we have

which means c = −F(a). In other words, G(x) = F(x) − F(a), and so

Proof of the second part

This is a limit proof by Riemann sums.

To begin, we recall the mean value theorem. Stated briefly, if F is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists some c in (a, b) such that

Let f be (Riemann) integrable on the interval [a, b], and let f admit an antiderivative F on (a, b) such that F is continuous on [a, b]. Begin with the quantity F(b) − F(a). Let there be numbers x0, ..., xn such that

It follows that

Now, we add each F(xi) along with its additive inverse, so that the resulting quantity is equal:

The above quantity can be written as the following sum:

The function F is differentiable on the interval (a, b) and continuous on the closed interval [a, b]; therefore, it is also differentiable on each interval (xi−1, xi) and continuous on each interval [xi−1, xi]. According to the mean value theorem (above), for each i there exists a in (xi−1, xi) such that

Substituting the above into ( 1' ), we get

The assumption implies Also, can be expressed as of partition .

A converging sequence of Riemann sums. The number in the upper left is the total area of the blue rectangles. They converge to the definite integral of the function. Riemann integral irregular.gif
A converging sequence of Riemann sums. The number in the upper left is the total area of the blue rectangles. They converge to the definite integral of the function.

We are describing the area of a rectangle, with the width times the height, and we are adding the areas together. Each rectangle, by virtue of the mean value theorem, describes an approximation of the curve section it is drawn over. Also need not be the same for all values of i, or in other words that the width of the rectangles can differ. What we have to do is approximate the curve with n rectangles. Now, as the size of the partitions get smaller and n increases, resulting in more partitions to cover the space, we get closer and closer to the actual area of the curve.

By taking the limit of the expression as the norm of the partitions approaches zero, we arrive at the Riemann integral. We know that this limit exists because f was assumed to be integrable. That is, we take the limit as the largest of the partitions approaches zero in size, so that all other partitions are smaller and the number of partitions approaches infinity.

So, we take the limit on both sides of ( 2' ). This gives us

Neither F(b) nor F(a) is dependent on , so the limit on the left side remains F(b) − F(a).

The expression on the right side of the equation defines the integral over f from a to b. Therefore, we obtain

which completes the proof.

Relationship between the parts

As discussed above, a slightly weaker version of the second part follows from the first part.

Similarly, it almost looks like the first part of the theorem follows directly from the second. That is, suppose G is an antiderivative of f. Then by the second theorem, . Now, suppose . Then F has the same derivative as G, and therefore F′ = f. This argument only works, however, if we already know that f has an antiderivative, and the only way we know that all continuous functions have antiderivatives is by the first part of the Fundamental Theorem. [9] For example, if f(x) = ex2, then f has an antiderivative, namely

and there is no simpler expression for this function. It is therefore important not to interpret the second part of the theorem as the definition of the integral. Indeed, there are many functions that are integrable but lack elementary antiderivatives, and discontinuous functions can be integrable but lack any antiderivatives at all. Conversely, many functions that have antiderivatives are not Riemann integrable (see Volterra's function).

Examples

Computing a particular integral

Suppose the following is to be calculated:

Here, and we can use as the antiderivative. Therefore:

Using the first part

Suppose

is to be calculated. Using the first part of the theorem with gives

This can also be checked using the second part of the theorem. Specifically, is an antiderivative of , so

An integral where the corollary is insufficient

Suppose

Then is not continuous at zero. Moreover, this is not just a matter of how is defined at zero, since the limit as of does not exist. Therefore, the corollary cannot be used to compute

But consider the function

Notice that is continuous on (including at zero by the squeeze theorem), and is differentiable on with Therefore, part two of the theorem applies, and

Theoretical example

The theorem can be used to prove that

Since,

the result follows from,

Generalizations

The function f does not have to be continuous over the whole interval. Part I of the theorem then says: if f is any Lebesgue integrable function on [a, b] and x0 is a number in [a, b] such that f is continuous at x0, then

is differentiable for x = x0 with F′(x0) = f(x0). We can relax the conditions on f still further and suppose that it is merely locally integrable. In that case, we can conclude that the function F is differentiable almost everywhere and F′(x) = f(x) almost everywhere. On the real line this statement is equivalent to Lebesgue's differentiation theorem. These results remain true for the Henstock–Kurzweil integral, which allows a larger class of integrable functions. [10]

In higher dimensions Lebesgue's differentiation theorem generalizes the Fundamental theorem of calculus by stating that for almost every x, the average value of a function f over a ball of radius r centered at x tends to f(x) as r tends to 0.

Part II of the theorem is true for any Lebesgue integrable function f, which has an antiderivative F (not all integrable functions do, though). In other words, if a real function F on [a, b] admits a derivative f(x) at every point x of [a, b] and if this derivative f is Lebesgue integrable on [a, b], then [11]

This result may fail for continuous functions F that admit a derivative f(x) at almost every point x, as the example of the Cantor function shows. However, if F is absolutely continuous, it admits a derivative F′(x) at almost every point x, and moreover F′ is integrable, with F(b) − F(a) equal to the integral of F′ on [a, b]. Conversely, if f is any integrable function, then F as given in the first formula will be absolutely continuous with F′ = f almost everywhere.

The conditions of this theorem may again be relaxed by considering the integrals involved as Henstock–Kurzweil integrals. Specifically, if a continuous function F(x) admits a derivative f(x) at all but countably many points, then f(x) is Henstock–Kurzweil integrable and F(b) − F(a) is equal to the integral of f on [a, b]. The difference here is that the integrability of f does not need to be assumed. [12]

The version of Taylor's theorem, which expresses the error term as an integral, can be seen as a generalization of the fundamental theorem.

There is a version of the theorem for complex functions: suppose U is an open set in C and f : UC is a function that has a holomorphic antiderivative F on U. Then for every curve γ : [a, b] → U, the curve integral can be computed as

The fundamental theorem can be generalized to curve and surface integrals in higher dimensions and on manifolds. One such generalization offered by the calculus of moving surfaces is the time evolution of integrals. The most familiar extensions of the fundamental theorem of calculus in higher dimensions are the divergence theorem and the gradient theorem.

One of the most powerful generalizations in this direction is Stokes' theorem (sometimes known as the fundamental theorem of multivariable calculus): [13] Let M be an oriented piecewise smooth manifold of dimension n and let be a smooth compactly supported (n1)-form on M. If M denotes the boundary of M given its induced orientation, then

Here d is the exterior derivative, which is defined using the manifold structure only.

The theorem is often used in situations where M is an embedded oriented submanifold of some bigger manifold (e.g. Rk) on which the form is defined.

The fundamental theorem of calculus allows us to pose a definite integral as a first-order ordinary differential equation.

can be posed as

with as the value of the integral.

See also

Notes

    Related Research Articles

    <span class="mw-page-title-main">Antiderivative</span> Concept in calculus

    In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function f is a differentiable function F whose derivative is equal to the original function f. This can be stated symbolically as F' = f. The process of solving for antiderivatives is called antidifferentiation, and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are often denoted by capital Roman letters such as F and G.

    <span class="mw-page-title-main">Integral</span> Operation in mathematical calculus

    In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide variety of scientific fields thereafter.

    <span class="mw-page-title-main">Mean value theorem</span> On the existence of a tangent to an arc parallel to the line through its endpoints

    In mathematics, the mean value theorem states, roughly, that for a given planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints. It is one of the most important results in real analysis. This theorem is used to prove statements about a function on an interval starting from local hypotheses about derivatives at points of the interval.

    <span class="mw-page-title-main">Riemann integral</span> Basic integral in elementary calculus

    In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göttingen in 1854, but not published in a journal until 1868. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration, or simulated using Monte Carlo integration.

    <span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

    In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

    <span class="mw-page-title-main">Cauchy's integral theorem</span> Theorem in complex analysis

    In mathematics, the Cauchy integral theorem in complex analysis, named after Augustin-Louis Cauchy, is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if is holomorphic in a simply connected domain Ω, then for any simply closed contour in Ω, that contour integral is zero.

    In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation; it is indeed derived using the product rule.

    In calculus, the constant of integration, often denoted by , is a constant term added to an antiderivative of a function to indicate that the indefinite integral of , on a connected domain, is only defined up to an additive constant. This constant expresses an ambiguity inherent in the construction of antiderivatives.

    <span class="mw-page-title-main">Numerical integration</span> Methods of calculating definite integrals

    In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral. The term numerical quadrature is more or less a synonym for "numerical integration", especially as applied to one-dimensional integrals. Some authors refer to numerical integration over more than one dimension as cubature; others take "quadrature" to include higher-dimensional integration.

    <span class="mw-page-title-main">Riemann sum</span> Approximation technique in integral calculus

    In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann. One very common application is in numerical integration, i.e., approximating the area of functions or lines on a graph, where it is also known as the rectangle rule. It can also be applied for approximating the length of curves and other approximations.

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation, and can loosely be thought of as using the chain rule "backwards."

    In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

    In mathematics, the Henstock–Kurzweil integral or generalized Riemann integral or gauge integral – also known as the (narrow) Denjoy integral, Luzin integral or Perron integral, but not to be confused with the more general wide Denjoy integral – is one of a number of inequivalent definitions of the integral of a function. It is a generalization of the Riemann integral, and in some situations is more general than the Lebesgue integral. In particular, a function is Lebesgue integrable if and only if the function and its absolute value are Henstock–Kurzweil integrable.

    <span class="mw-page-title-main">Arc length</span> Distance along a curve

    Arc length is the distance between two points along a section of a curve.

    In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

    A product integral is any product-based counterpart of the usual sum-based integral of calculus. The first product integral was developed by the mathematician Vito Volterra in 1887 to solve systems of linear differential equations. Other examples of product integrals are the geometric integral, the bigeometric integral, and some other integrals of non-Newtonian calculus.

    In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane.

    Within differential calculus, in many applications, one needs to calculate the rate of change of a volume or surface integral whose domain of integration, as well as the integrand, are functions of a particular parameter. In physical applications, that parameter is frequently time t.

    In mathematics, integrals of inverse functions can be computed by means of a formula that expresses the antiderivatives of the inverse of a continuous and invertible function , in terms of and an antiderivative of . This formula was published in 1905 by Charles-Ange Laisant.

    Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

    References

    1. Weisstein, Eric W. "First Fundamental Theorem of Calculus". mathworld.wolfram.com. Retrieved 2024-04-15.
    2. Malet, Antoni (1993). "James Gregorie on tangents and the "Taylor" rule for series expansions". Archive for History of Exact Sciences . 46 (2). Springer-Verlag: 97–137. doi:10.1007/BF00375656. S2CID   120101519. Gregorie's thought, on the other hand, belongs to a conceptual framework strongly geometrical in character. (page 137)
    3. See, e.g., Marlow Anderson, Victor J. Katz, Robin J. Wilson, Sherlock Holmes in Babylon and Other Tales of Mathematical History, Mathematical Association of America, 2004, p. 114.
    4. Gregory, James (1668). Geometriae Pars Universalis. Museo Galileo: Patavii: typis heredum Pauli Frambotti.
    5. Child, James Mark; Barrow, Isaac (1916). The Geometrical Lectures of Isaac Barrow. Chicago: Open Court Publishing Company.
    6. Apostol 1967 , §5.1
    7. Apostol 1967 , §5.3
    8. Leithold, L. (1996), The calculus of a single variable (6th ed.), New York: HarperCollins College Publishers, p. 380.
    9. Spivak, Michael (1980), Calculus (2nd ed.), Houston, Texas: Publish or Perish Inc.
    10. Bartle (2001), Thm. 4.11.
    11. Rudin 1987 , th. 7.21
    12. Bartle (2001), Thm. 4.7.
    13. Spivak, M. (1965). Calculus on Manifolds. New York: W. A. Benjamin. pp. 124–125. ISBN   978-0-8053-9021-6.

    Bibliography

    Further reading