Sphingosine kinase

Last updated
sphinganine kinase
Identifiers
EC no. 2.7.1.91
CAS no. 50864-48-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
sphingosine kinase 1
3vzd.jpg
Sphingosine kinase 1, hexamer, Human
Identifiers
Symbol SPHK1
NCBI gene 8877
HGNC 11240
OMIM 603730
RefSeq NM_182965
UniProt Q9NYA1
Other data
EC number 2.7.1.91
Locus Chr. 17 q25.2
Search for
Structures Swiss-model
Domains InterPro
sphingosine kinase 2
Identifiers
Symbol SPHK2
NCBI gene 56848
HGNC 18859
OMIM 607092
RefSeq NM_020126
UniProt Q9NRA0
Other data
EC number 2.7.1.91
Locus Chr. 19 q13.2
Search for
Structures Swiss-model
Domains InterPro

Sphingosine kinase (SphK) is a conserved lipid kinase that catalyzes formation sphingosine-1-phosphate (S1P) from the precursor sphingolipid sphingosine. Sphingolipid metabolites, such as ceramide, sphingosine and sphingosine-1-phosphate, are lipid second messengers involved in diverse cellular processes. There are two forms of SphK, SphK1 and SphK2. SphK1 is found in the cytosol of eukaryotic cells, and migrates to the plasma membrane upon activation. SphK2 is localized to the nucleus.

Contents

Function

S1P has been shown to regulate diverse cellular processes. It has been characterized as a lipid signaling molecule with dual function. On one hand, it exerts its actions extracellularly by binding to the five different S1P receptors that couple to a variety of G-proteins to regulate diverse biological functions, ranging from cell growth and survival to effector functions, such as proinflammatory mediator synthesis. On the other hand, it appears to act as an intracellular second messenger, [1] although the relevant molecular target(s) to which it binds within cells remains to be discovered. The role of S1P in various functions of cells and tissues is established, including regulation of cell survival and motility, angiogenesis, and inflammatory responses. Sphingosine kinases (SphKs) types 1 and 2, the two enzymes identified so far in mammals that produce S1P by ATP-dependent phosphorylation of sphingosine, have therefore received considerable interest. [2]

Sphingolipid metabolism

Sphingolipids are ubiquitous membrane constituents of all eukaryotic cells. In general, the term sphingolipid (SL) refers to any of a number of lipids consisting of a head group attached to the 1-OH of ceramide (Cer). Ceramides consist of a sphingoid base, commonly referred to as a long-chain base (LCB), which is N-acylated. De novo synthesis of LCBs begins with the condensation of palmitoyl-CoA with serine, forming 3-ketosphinganine (Fig. 1). This product is then reduced to sphinganine, also known as dihydrosphingosine (dihydro-Sph; 2-amino-1,3-dihydroxy-octadecane). A 14– to 26-carbon fatty acid chain is then added in an amide linkage with the 2-amino group, forming dihydroceramide (dihydro-Cer). A head group, such as phosphocholine or a carbohydrate, can now be added to the 1-OH, forming a sphingolipid, although most sphingolipids of higher eukaryotes contain further modifications of the LCB. [3]

De novo synthesis Sphk1 diag b.jpg
De novo synthesis

During "100,000 Airplanes", a third season episode of The West Wing , sphingosine kinase is fictitiously described as "the enzyme believed to control all signal pathways to cancer growth." Learning of it inspires the protagonist of the series, President Josiah Bartlet, to consider launching an Apollo program to cure cancer.

Related Research Articles

<span class="mw-page-title-main">Kinase</span> Enzyme catalyzing transfer of phosphate groups onto specific substrates

In biochemistry, a kinase is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule donates a phosphate group to the substrate molecule. This transesterification produces a phosphorylated substrate and ADP. Conversely, it is referred to as dephosphorylation when the phosphorylated substrate donates a phosphate group and ADP gains a phosphate group. These two processes, phosphorylation and dephosphorylation, occur four times during glycolysis.

<span class="mw-page-title-main">Sphingolipid</span> Family of chemical compounds

Sphingolipids are a class of lipids containing a backbone of sphingoid bases, which are a set of aliphatic amino alcohols that includes sphingosine. They were discovered in brain extracts in the 1870s and were named after the mythological sphinx because of their enigmatic nature. These compounds play important roles in signal transduction and cell recognition. Sphingolipidoses, or disorders of sphingolipid metabolism, have particular impact on neural tissue. A sphingolipid with a terminal hydroxyl group is a ceramide. Other common groups bonded to the terminal oxygen atom include phosphocholine, yielding a sphingomyelin, and various sugar monomers or dimers, yielding cerebrosides and globosides, respectively. Cerebrosides and globosides are collectively known as glycosphingolipids.

<span class="mw-page-title-main">Sphingomyelin</span>

Sphingomyelin is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath that surrounds some nerve cell axons. It usually consists of phosphocholine and ceramide, or a phosphoethanolamine head group; therefore, sphingomyelins can also be classified as sphingophospholipids. In humans, SPH represents ~85% of all sphingolipids, and typically make up 10–20 mol % of plasma membrane lipids.

Sphingosine (2-amino-4-trans-octadecene-1,3-diol) is an 18-carbon amino alcohol with an unsaturated hydrocarbon chain, which forms a primary part of sphingolipids, a class of cell membrane lipids that include sphingomyelin, an important phospholipid.

<span class="mw-page-title-main">Ceramide</span> Family of waxy lipid molecules

Ceramides are a family of waxy lipid molecules. A ceramide is composed of sphingosine and a fatty acid joined by an amide bond. Ceramides are found in high concentrations within the cell membrane of eukaryotic cells, since they are component lipids that make up sphingomyelin, one of the major lipids in the lipid bilayer. Contrary to previous assumptions that ceramides and other sphingolipids found in cell membrane were purely supporting structural elements, ceramide can participate in a variety of cellular signaling: examples include regulating differentiation, proliferation, and programmed cell death (PCD) of cells.

<span class="mw-page-title-main">Lipid signaling</span> Biological signaling using lipid molecules

Lipid signaling, broadly defined, refers to any biological signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.

Sphingosine-1-phosphate (S1P) is a signaling sphingolipid, also known as lysosphingolipid. It is also referred to as a bioactive lipid mediator. Sphingolipids at large form a class of lipids characterized by a particular aliphatic aminoalcohol, which is sphingosine.

Palmitoyl-CoA is an acyl-CoA thioester. It is an "activated" form of palmitic acid and can be transported into the mitochondrial matrix by the carnitine shuttle system, and once inside can participate in beta-oxidation. Alternatively, palmitoyl-CoA is used as a substrate in the biosynthesis of sphingosine.

Ceramidase is an enzyme which cleaves fatty acids from ceramide, producing sphingosine (SPH) which in turn is phosphorylated by a sphingosine kinase to form sphingosine-1-phosphate (S1P).

<span class="mw-page-title-main">S1PR1</span> Protein and coding gene in humans

Sphingosine-1-phosphate receptor 1, also known as endothelial differentiation gene 1 (EDG1) is a protein that in humans is encoded by the S1PR1 gene. S1PR1 is a G-protein-coupled receptor which binds the bioactive signaling molecule sphingosine 1-phosphate (S1P). S1PR1 belongs to a sphingosine-1-phosphate receptor subfamily comprising five members (S1PR1-5). S1PR1 was originally identified as an abundant transcript in endothelial cells and it has an important role in regulating endothelial cell cytoskeletal structure, migration, capillary-like network formation and vascular maturation. In addition, S1PR1 signaling is important in the regulation of lymphocyte maturation, migration and trafficking.

The enzyme sphinganine-1-phosphate aldolase catalyzes the chemical reaction

<span class="mw-page-title-main">S1PR2</span> Protein and coding gene in humans

Sphingosine-1-phosphate receptor 2, also known as S1PR2 or S1P2, is a human gene which encodes a G protein-coupled receptor which binds the lipid signaling molecule sphingosine 1-phosphate (S1P).

In enzymology, sphingosine N-acyltransferases (ceramide synthases (CerS), EC 2.3.1.24) are enzymes that catalyze the chemical reaction of synthesis of ceramide:

In enzymology, a ceramide kinase, also abbreviated as CERK, is an enzyme that catalyzes the chemical reaction:

<span class="mw-page-title-main">SPTLC2</span> Protein-coding gene in the species Homo sapiens

Serine palmitoyltransferase, long chain base subunit 2, also known as SPTLC2, is a protein which in humans is encoded by the SPTLC2 gene. SPTLC2 belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family.

Safingol is a lyso-sphingolipid protein kinase inhibitor. It has the molecular formula C18H39NO2 and is a colorless solid. Medicinally, safingol has demonstrated promising anticancer potential as a modulator of multi-drug resistance and as an inducer of necrosis. The administration of safingol alone has not been shown to exert a significant effect on tumor cell growth. However, preclinical and clinical studies have shown that combining safingol with conventional chemotherapy agents such as fenretinide, vinblastine, irinotecan and mitomycin C can dramatically potentiate their antitumor effects. Currently in Phase I clinical trials, it is believed to be safe to co-administer with cisplatin.

<span class="mw-page-title-main">Ceramide synthase 2</span> Protein-coding gene in the species Homo sapiens

Ceramide synthase 2, also known as LAG1 longevity assurance homolog 2 or Tumor metastasis-suppressor gene 1 protein is an enzyme that in humans is encoded by the CERS2 gene.

Ceramide synthase 5 (CerS5) is the enzyme encoded in humans by the CERS5 gene.

Sarah Spiegel is professor and chair of the Department of Biochemistry and Molecular Biology at Virginia Commonwealth University (VCU). In the mid-1990s she discovered the sphingosine-1-phosphate (S1P) molecule, a lipid which has been identified as a signaler for the spread of cancer, inflammation, and cardiovascular disease. Her research continues to focus on S1P.

Find-me signals

References

  1. Olivera A, Spiegel S (April 2001). "Sphingosine kinase: a mediator of vital cellular functions". Prostaglandins Other Lipid Mediat. 64 (1–4): 123–34. doi:10.1016/S0090-6980(01)00108-3. PMID   11324702.
  2. Billich A, Bornancin F, Mechtcheriakova D, Natt F, Huesken D, Baumruker T (October 2005). "Basal and induced sphingosine kinase 1 activity in A549 carcinoma cells: function in cell survival and IL-1beta and TNF-alpha induced production of inflammatory mediators". Cell. Signal. 17 (10): 1203–17. doi:10.1016/j.cellsig.2004.12.005. PMID   16038795.
  3. Maceyka M, Milstien S, Spiegel S (September 2005). "Sphingosine kinases, sphingosine-1-phosphate and sphingolipidomics". Prostaglandins Other Lipid Mediat. 77 (1–4): 15–22. doi:10.1016/j.prostaglandins.2004.09.010. PMID   16099387.

Further reading