Geology of Lithuania

Last updated

The geology of Lithuania consists of ancient Proterozoic basement [1] rock overlain by thick sequences of Paleozoic, Mesozoic and Cenozoic marine sedimentary rocks, with some oil reserves, abundant limestone, dolomite, phosphorite and glauconite. [2] Lithuania is a country in the Baltic region of northern-eastern Europe.

Contents

Geologic history, stratigraphy and tectonics

The basement rock of Lithuania is made up of the West Lithuanian Granitic Massif aluminous schist, metabasic rocks (reaching granulite grade on the sequence of metamorphic facies) and gneiss and the Southeast Lithuanian Zone granitoids, plagiomicrocline granite and migmatite. The massif has some notable Mesoproterozoic dike swarms. In the southeast, granitoids alternate with metagraywacke, amphibolite and rare dolomite marble, mica-schist. Metamorphic rocks typically reach amphibolite facies and ultramafic or mafic intrusions are common.

An angular unconformity separates weathered basement rock from the Merkys Formation fanglomerates, formed in the Neoproterozoic. Salica Formation arkose and siltstone overlies these units, overlain in the east by the Kieva Formation with siltstone, clay and sandstone. Sedimentary rocks up to 2.3 kilometers thick define the entire Phanerozoic rock record. [3]

Paleozoic (539–251 million years ago)

Dark green clay with sandstone and siltstone interbeds, together up to 40 meters thick, overlies Vendian age rocks, defining the Lower Cambrian and the start of the Paleozoic. It is overlain by the Lontova Stage clays. The Vergale Stage has an angular unconformity with basement rocks in the east and contains brown oolitic ironstone, sandstone, siltstone and argillite up to 45 meters thick with the 42 meter Rausve Stage sandstone and siltstone above it.

The mid-Cambrian Kybartai Stage sits above the Rausve Stage with abundant glauconite and is overlain in the west by the 67 meters of clay in the Deimena Stage or the Paneriai Stage argillite and sandstone in the east.

Ordovician rocks include numerous limestone and marl sequences in the Kunda, Aseri, Lasnamae, Uhaku, Idavere, Johvi, Keila, Rakvere, Nabala, Vormsi, Pirgu and Porkuni stages. Juuru Stage microcrystalline nodular limestone and red marl from the Silurian transgressively overlies Ordovician rocks, ascending through a sequence that includes the Raikkula, Adavere, Jaani, Jaagarahu, Siesartis, Dubysa, Pagegiai, Minija and Jura stage rocks, which include argillite, dolomite, marl, clay and other basin sediments.

The early Devonian Tilzee and Stoniskiai Stage rocks are disconformably overlain by the Kemeri Stage with clays and siltstones up to 170 meters thick. This is in-turn overlain disconformably by the Rezekne Stage. Other units include the Parnu, Narva, Arukula, Burtnieki, Sventoji, Dubnik, Katleski, Pamusis, Stipinai, Amula, Kruoja, Siauliai, Joniski, Kursa, Akmene, Muri, Svete, Zagare and Ketleri stages. Sandstone, siltstone and dolomitic marl of the Letiza Formation up to 20 meters thick marks the beginning of the Carboniferous, overlain by 16 meters of Paplaka Formation dolomite and 50 meters of Nica Formation sandstones, sands and siltstones. Basal conglomerates begin the Werra Stage sequence from the Permian, which ascends into siltstone, limestone, marl, gypsum and anhydrite up to 170 meters thick. The very thin (no more than eight meters) Strassfurt Stage is the final Paleozoic unit in Lithuania. [4]

Mesozoic (251–66 million years ago)

The Nemunas Formation is the oldest Mesozoic formation, from the Triassic, overlying Permian, Carboniferous, Neoproterozoic and Devonian rocks with clay, argillite, marl and siltstone up to 131 meters thick. It is conformably overlain by the clay, argillite and sandstones of the Palanga Formation up to 776 meters thick, the 54 meter Taurage Formation oolitic limestones, marl and clay, and the reddish clays with sandstone-siltstone layers of the Sarkuva Formation. The Upper Triassic is marked by the Nida Formation, which lies disconformably on older Triassic rocks with 15 meters of sandstone, siltstone and clay.

Basal conglomerate marks the beginning of the Lower Jurassic Neringa Formation with 33 meters of sandstone and clay, with the 45 meter siltstones, clay and sandstone of the Lave Formation. The Middle Jurassic Isrutis Formation overlies both Triassic rocks and the Lava Formation with black sands 100 meters thick. Seventy meters of the Liepona Formation calcareous sandstones and gray clays lies above both the Lava and Isrutis formations. The Papile Formation is associated with the Callovian time period and includes marl, limestone, sandstone, sands, siderite and clay. Late Jurassic Oxfordian, Kimmeridgian and Volgian rocks 68, 36 and 20 meters thick lie above these units with approximately the same sedimentary makeup. Sixteen meters of deltaic sands and siltstones known as the Uzupiai Formation mark the beginning of the Cretaceous, while 53 meters of glauconite sand in the Jiesia Formation have an angular unconformity with Jurassic and Silurian rocks.

A basal phosphorite layer indicates a return to deposition after a disconformity between older Cretaceous rocks and Cenomanian sequences, which also include sand, silt, chalky marl and limestone. Chalk and chert nodules are defining sedimentary features of 48 meter Turonian, 79 meter Coniacian and 40 meter Santonian age rocks. [5]

Cenozoic (66 million years ago – present)

The Liubava Formation from the Paleocene lies disconformably atop Maastrichtian age rocks and includes marl and glauconite silt 56 meters thick. It is overlain disconformably by the Eocene Alka Formation glauconite sands, silts and phosphorite up to 27 meters thick. The Prusai Formation with 10 to 12 meter thick amber, phosphorite and glauconite silts overlies both units. Carbonaceous sands with layers of silt and clay up to 18 meters thick deposited during the Miocene. There are also Pliocene beds of sand, silt and clay up to 14 meters thick and the Anyksciai Formation, made up of 10 meters of quartz sandstone, sand, silt and clay. [6]

Natural resource geology

In the 1990s, 38 million cubic meters of raw materials were mined in Lithuania every year and 1.3 million cubic meters of groundwater were pumped to the surface. Chalk, limestone and dolomite are abundant and widely used for construction. Iron ore and anhydrite are known from the Precambrian basement, but have not been exploited. Cambrian and Silurian rocks hold about 100 million tons of oil. Quaternary gravel, Neogene glass-grade sand, Devonian gypsum and Paleogene amber are also extracted. [7]

Related Research Articles

<span class="mw-page-title-main">Geology of the Isle of Wight</span>

The geology of the Isle of Wight is dominated by sedimentary rocks of Cretaceous and Paleogene age. This sequence was affected by the late stages of the Alpine Orogeny, forming the Isle of Wight monocline, the cause of the steeply-dipping outcrops of the Chalk Group and overlying Paleogene strata seen at The Needles, Alum Bay and Whitecliff Bay.

The geology of Tunisia is defined by the tectonics of North Africa, with large highlands like the Atlas Mountains as well as basins such as the Tunisian Trough. Geologists have identified rock units in the country as much as a quarter-billion years old, although most units date to the Mesozoic and Cenozoic, in the past 250 million years. Tunisia has a small but active mining industry and a significant oil and natural gas sector.

The geology of Morocco formed beginning up to two billion years ago, in the Paleoproterozoic and potentially even earlier. It was affected by the Pan-African orogeny, although the later Hercynian orogeny produced fewer changes and left the Maseta Domain, a large area of remnant Paleozoic massifs. During the Paleozoic, extensive sedimentary deposits preserved marine fossils. Throughout the Mesozoic, the rifting apart of Pangaea to form the Atlantic Ocean created basins and fault blocks, which were blanketed in terrestrial and marine sediments—particularly as a major marine transgression flooded much of the region. In the Cenozoic, a microcontinent covered in sedimentary rocks from the Triassic and Cretaceous collided with northern Morocco, forming the Rif region. Morocco has extensive phosphate and salt reserves, as well as resources such as lead, zinc, copper and silver.

The geology of Estonia is the study of rocks, minerals, water, landforms and geologic history in Estonia. The crust is part of the East European Craton and formed beginning in the Paleoproterozoic nearly two billion years ago. Shallow marine environments predominated in Estonia, producing extensive natural resources from organic matter such as oil shale and phosphorite. The Mesozoic and much of the Cenozoic are not well-preserved in the rock record, although the glaciations during the Pleistocene buried deep valleys in sediment, rechanneled streams and left a landscape of extensive lakes and peat bogs.

<span class="mw-page-title-main">Geology of Belarus</span>

The geology of Belarus began to form more than 2.5 billion years ago in the Precambrian, although many overlying sedimentary units deposited during the Paleozoic and the current Quaternary. Belarus is located in the eastern European plain. From east to west it covers about 650 kilometers while from north to south it covers about 560 kilometers, and the total area is about 207,600 square kilometers. It borders Poland in the north, Lithuania in the northwest, Latvia and Russia in the north, and Ukraine in the south. Belarus has a planar topography with a height of about 160 m above sea level. The highest elevation at 346 meters above sea level is Mt. Dzerzhinskaya, and the lowest point at the height of 80 m is in the Neman River valley.

The geology of Georgia is the study of rocks, minerals, water, landforms and geologic history in Georgia. The country is dominated by the Caucasus Mountains at the junction of the Eurasian Plate and the Afro-Arabian Plate, and rock units from the Mesozoic and Cenozoic are particularly prevalent. For much of its geologic history, until the uplift of the Caucasus, Georgia was submerged by marine transgression events. Geologic research for 150 years by Georgian and Russian geologists has shed significant light on the region and since the 1970s has been augmented with the understanding of plate tectonics.

<span class="mw-page-title-main">Geology of Bosnia and Herzegovina</span>

The geology of Bosnia & Herzegovina is the study of rocks, minerals, water, landforms and geologic history in the country. The oldest rocks exposed at or near the surface date to the Paleozoic and the Precambrian geologic history of the region remains poorly understood. Complex assemblages of flysch, ophiolite, mélange and igneous plutons together with thick sedimentary units are a defining characteristic of the Dinaric Alps, also known as the Dinaride Mountains, which dominate much of the country's landscape.

<span class="mw-page-title-main">Geology of Moldova</span>

The geology of Moldova encompasses basement rocks from the Archean and Paleoproterozoic dating back more than 2.5 billion years, overlain by thick sequences of Neoproterozoic, Paleozoic, Mesozoic and Cenozoic sedimentary rocks.

<span class="mw-page-title-main">Geology of Kazakhstan</span>

The geology of Kazakhstan includes extensive basement rocks from the Precambrian and widespread Paleozoic rocks, as well as sediments formed in rift basins during the Mesozoic.

The geology of Kuwait includes extremely thick, oil and gas-bearing sedimentary sequences from the Mesozoic and Cenozoic. Kuwait is a country in Western Asia, situated in the northern edge of Eastern Arabia at the tip of the Persian Gulf.

<span class="mw-page-title-main">Geology of Afghanistan</span>

The geology of Afghanistan includes nearly one billion year old rocks from the Precambrian. The region experienced widespread marine transgressions and deposition during the Paleozoic and Mesozoic, that continued into the Cenozoic with the uplift of the Hindu Kush mountains.

<span class="mw-page-title-main">Geology of Kyrgyzstan</span>

The geology of Kyrgyzstan began to form during the Proterozoic. The country has experienced long-running uplift events, forming the Tian Shan mountains and large, sediment filled basins.

<span class="mw-page-title-main">Geology of Uzbekistan</span> Geology of Uzbekistan, an west Asian nation

The geology of Uzbekistan consists of two microcontinents and the remnants of oceanic crust, which fused together into a tectonically complex but resource rich land mass during the Paleozoic, before becoming draped in thick, primarily marine sedimentary units.

The geology of Thailand includes deep crystalline metamorphic basement rocks, overlain by extensive sandstone, limestone, turbidites and some volcanic rocks. The region experienced complicated tectonics during the Paleozoic, long-running shallow water conditions and then renewed uplift and erosion in the past several million years ago.

<span class="mw-page-title-main">Geology of North Korea</span>

The geology of North Korea has been studied by the Central Geological Survey of Mineral Resources, rare international research and by inference from South Korea's geology.

<span class="mw-page-title-main">Geology of Latvia</span>

Geology of Latvia includes an ancient Archean and Proterozoic crystalline basement overlain with Neoproterozoic volcanic rocks and numerous sedimentary rock sequences from the Paleozoic, some from the Mesozoic and many from the recent Quaternary past. Latvia is a country in the Baltic region of Northern Europe.

The geology of Greece is highly structurally complex due to its position at the junction between the European and African tectonic plates.

The geology of Denmark includes 12 kilometers of unmetamorphosed sediments lying atop the Precambrian Fennoscandian Shield, the Norwegian-Scottish Caledonides and buried North German-Polish Caledonides. The stable Fennoscandian Shield formed from 1.45 billion years ago to 850 million years ago in the Proterozoic. The Fennoscandian Border Zone is a large fault, bounding the deep basement rock of the Danish Basin—a trough between the Border Zone and the Ringkobing-Fyn High. The Sorgenfrei-Tornquist Zone is a fault-bounded area displaying Cretaceous-Cenozoic inversion.

The geology of Israel includes igneous and metamorphic crystalline basement rocks from the Precambrian overlain by a lengthy sequence of sedimentary rocks extending up to the Pleistocene and overlain with alluvium, sand dunes and playa deposits.

The geology of Yukon includes sections of ancient Precambrian Proterozoic rock from the western edge of the proto-North American continent Laurentia, with several different island arc terranes added through the Paleozoic, Mesozoic and Cenozoic, driving volcanism, pluton formation and sedimentation.

References

  1. Motuza, Gediminas (2022). The Precambrian Geology of Lithuania: An Integratory Study of the Platform Basement Structure and Evolution. Springer. ISBN   978-3-030-96855-7.
  2. Moores, E.M.; Fairbridge, Rhodes W. (1997). Encyclopedia of European & Asian Regional Geology. Springer. p. 510-516.
  3. Moores & Fairbridge 1997, pp. 508–510.
  4. Moores & Fairbridge 1997, pp. 511–513.
  5. Moores & Fairbridge 1997, pp. 513–514.
  6. Moores & Fairbridge 1997, p. 514.
  7. Moores & Fairbridge 1997, pp. 514–515.