Geology of Bosnia and Herzegovina

Last updated
Tilted layers of limestone beside the R467 road at Donja Strmica Bosnia D Strmica R467 IMG 0481 geology.JPG
Tilted layers of limestone beside the R467 road at Donja Strmica

The geology of Bosnia & Herzegovina is the study of rocks, minerals, water, landforms and geologic history in the country. The oldest rocks exposed at or near the surface date to the Paleozoic and the Precambrian geologic history of the region remains poorly understood. Complex assemblages of flysch, ophiolite, mélange and igneous plutons together with thick sedimentary units are a defining characteristic of the Dinaric Alps, also known as the Dinaride Mountains, which dominate much of the country's landscape. [1]

Contents

Stratigraphy, tectonics & geologic history

Paleozoic (538.8–251.9 million years ago)

Paleozoic allochthon formations are found in the lower rock units in the northeast margin of the Dinarides. These rocks are found in isolated areas in the northwest, central, eastern and southeastern Bosnia and are made up of metapsammite, metapelite and smaller amounts of volcanic and carbonate rock. The Southeastern Paleozoic Zone comprises phyllite, schistose metasandstone and crystalline limestone, overlain by slate and more phyllite.

Permian rocks are mainly red beds with slate, metasandstone, limestones, gypsum, anhydrite and conglomerates. [2]

Mesozoic (251.9–66 million years ago)

Ptychites studeri ammonoid fossil from Triassic rocks in Bosnia Ptychitidae - Ptychites studeri.JPG
Ptychites studeri ammonoid fossil from Triassic rocks in Bosnia

During the Triassic, rifting emplaced igneous rocks, including large plutons up to 50 cubic kilometers in size, made up of gabbro, diorite, granodiorite, granite, albite, syenite and occasionally metamorphosed to greenschist or amphibolite-grade on the sequence of metamorphic facies.

True volcanic rocks from the Triassic that erupted onto the surface are less common, mainly basalt, andesite and dacite, transformed into spilite, keratophyre and pyroclastic rocks. Older Triassic rocks and the carbonate platform were covered over by lava. Graywacke, breccia, shale and chert and ophiolite are widespread in the Ophiolite Zone, in northwestern and central Bosnia. The Ophiolite Zone outcrops as "windows" within the Triassic-Paleozoic unit, and the unit is 1.5 kilometers thick. The mélange in this chaotic sedimentary sequence contains fragments of gabbro, diabase, peridotite, basalt and amphibolite, together with Tithonian age limestone fragments.

Peridotite is one of the most common rocks in the ophiolites, with large deformed sheets up to 500 cubic kilometers in size. Mt. Konjuh is an example of a large ultramafic body, underlain by amphibolites associated with eclogite. Amphibolites interlayed with peridotite have been dated to 170 to 160 million years ago.

Ultramafic massifs in the Ophiolite Zone are unconformably overlain by Late Jurassic and Late Cretaceous sandstones, marl, shale and limestone up to one kilometer thick. These sequences interfinger with Tithonian-Berriasian, Albian and Senonian limestones. Coarse-grained clastic rocks contain fragments of ophiolite, amphibolite, greywacke, shale, chert, limestone and pebbles of red granite. In the northern Dinaride Mountains, the end of the Cretaceous in the Vardar Zone is marked by Turonian limestones.

Cenozoic (66 million years ago-present)

In the northern Dinaride Mountains, flysch several meters thick grades from Maastrichtian sandstone, siltstone and shale into Paleocene calcite shale, calcareous sandstone, sandy limestones and limestones. The flysch is overlain by more limestone from the Middle Eocene.

In some cases, the interlayering of Late Cretaceous-Paleogene flysch with volcanic rocks has resulted in medium-pressure metamorphism. Rock sequences prograde from sandstone, shale, marl and limestone to slate and meta-sandstone along with greenschist, mica schist, amphibolite, gneiss and phyllite. Small and medium-sized plutons are found in the subsurface, within the metamorphic rock. Strontium-argon dating of the Motajica granitoid returned an age of 48 million years ago. [3] After the formation of the Dinaride Mountains, the South Pannonian Basin filled with the Ottnangian-Karpathian rock salt formation up to 700 meters thick, the Badenian marine clays, sandstones, conglomerates and reef limestones, Sarmatian brackish clays, and the Pannonian and Pontian freshwater sand and clay deposits, up to two kilometers thick with coal seams. The same Oligocene deposition that filled the South Pannonian Basin deposited sedimentary fill several kilometers thick in freshwater basins between the mountains. Geologists divide the freshwater deposits into Oligocene and Miocene conglomerates, coal seams, sandstone, limestone and marl, early Miocene clays and sandstone overlain by limestone, and late Miocene marl, limestone and coal. [4]

History of geologic research

The first widespread research in Bosnia was led by Austrian and Croatian geologists in the 1880s, with maps published in the 1910s. During the Yugoslav period after World War II, extensive mining prompted additional exploration. French geologists took a leading role in research from the late 1960s into the 1970s. [5]

Natural resource geology

Bosnia and Herzegovina has a long tradition of mining stretching back over 2000 years to Illyrian and Roman times. In particular, metals are mined from the Paleozoic-Triassic Nappe, which formed during the Caledonian orogeny, Hercynian orogeny and the Triassic. Early Paleozoic rocks contain metapelite and metapsammite, as well as low quality hematite and magnetite. The Ljubija mines have traditionally extracted Carboniferous siderite-ankerite deposits, enriched in iron. [6]

Related Research Articles

Geology of the Pyrenees European regional geology

The Pyrenees are a 430-kilometre-long, roughly east–west striking, intracontinental mountain chain that divide France, Spain, and Andorra. The belt has an extended, polycyclic geological evolution dating back to the Precambrian. The chain's present configuration is due to the collision between the microcontinent Iberia and the southwestern promontory of the European Plate. The two continents were approaching each other since the onset of the Upper Cretaceous (Albian/Cenomanian) about 100 million years ago and were consequently colliding during the Paleogene (Eocene/Oligocene) 55 to 25 million years ago. After its uplift, the chain experienced intense erosion and isostatic readjustments. A cross-section through the chain shows an asymmetric flower-like structure with steeper dips on the French side. The Pyrenees are not solely the result of compressional forces, but also show an important sinistral shearing.

Geology of Iran

The main points that are discussed in the geology of Iran include the study of the geological and structural units or zones; stratigraphy; magmatism and igneous rocks; ophiolite series and ultramafic rocks; and orogenic events in Iran.

The geology of Georgia is the study of rocks, minerals, water, landforms and geologic history in Georgia. The country is dominated by the Caucasus Mountains at the junction of the Eurasian Plate and the Afro-Arabian Plate, and rock units from the Mesozoic and Cenozoic are particularly prevalent. For much of its geologic history, until the uplift of the Caucasus, Georgia was submerged by marine transgression events. Geologic research for 150 years by Georgian and Russian geologists has shed significant light on the region and since the 1970s has been augmented with the understanding of plate tectonics.

Geology of North Macedonia

The geology of North Macedonia includes the study of rocks dating to the Precambrian and a wide array of volcanic, sedimentary and metamorphic rocks formed in the last 541 million years.

Geology of Kazakhstan

The geology of Kazakhstan includes extensive basement rocks from the Precambrian and widespread Paleozoic rocks, as well as sediments formed in rift basins during the Mesozoic.

The geology of Afghanistan includes nearly one billion year old rocks from the Precambrian. The region experienced widespread marine transgressions and deposition during the Paleozoic and Mesozoic, that continued into the Cenozoic with the uplift of the Hindu Kush mountains.

Geology of Uzbekistan

The geology of Uzbekistan consists of two microcontinents and the remnants of oceanic crust, which fused together into a tectonically complex but resource rich land mass during the Paleozoic, before becoming draped in thick, primarily marine sedimentary units.

The geology of Thailand includes deep crystalline metamorphic basement rocks, overlain by extensive sandstone, limestone, turbidites and some volcanic rocks. The region experienced complicated tectonics during the Paleozoic, long-running shallow water conditions and then renewed uplift and erosion in the past several million years ago.

The geology of Turkmenistan includes two different geological provinces: the Karakum, or South Turan Platform, and the Alpine Orogen.

Geology of Bulgaria

The geology of Bulgaria consists of two major structural features. The Rhodope Massif in southern Bulgaria is made up of Archean, Proterozoic and Cambrian rocks and is a sub-province of the Thracian-Anatolian polymetallic province. It has dropped down, faulted basins filled with Cenozoic sediments and volcanic rocks. The Moesian Platform to the north extends into Romania and has Paleozoic rocks covered by rocks from the Mesozoic, typically buried by thick Danube River valley Quaternary sediments. In places, the Moesian Platform has small oil and gas fields. Bulgaria is a country in southeastern Europe. It is bordered by Romania to the north, Serbia and North Macedonia to the west, Greece and Turkey to the south, and the Black Sea to the east.

The geology of Romania is structurally complex, with evidence of past crustal movements and the incorporation of different blocks or platforms to the edge of Europe, driving recent mountain building of the Carpathian Mountains. Romania is a country located at the crossroads of Central, Eastern, and Southeastern Europe. It borders the Black Sea to the southeast, Bulgaria to the south, Ukraine to the north, Hungary to the west, Serbia to the southwest, and Moldova to the east.

Geology of Slovakia Overview of the geology of Slovakia

The geology of Slovakia is structurally complex, with a highly varied array of mountain ranges and belts largely formed during the Paleozoic, Mesozoic and Cenozoic eras.

The geology of Lithuania consists of ancient Proterozoic basement rock overlain by thick sequences of Paleozoic, Mesozoic and Cenozoic marine sedimentary rocks, with some oil reserves, abundant limestone, dolomite, phosphorite and glauconite. Lithuania is a country in the Baltic region of northern-eastern Europe.

Geology of Latvia

Geology of Latvia includes an ancient Archean and Proterozoic crystalline basement overlain with Neoproterozoic volcanic rocks and numerous sedimentary rock sequences from the Paleozoic, some from the Mesozoic and many from the recent Quaternary past. Latvia is a country in the Baltic region of Northern Europe.

Geology of Croatia Overview of the geology of Croatia

The geology of Croatia has some Precambrian rocks mostly covered by younger sedimentary rocks and deformed or superimposed by tectonic activity.

The geology of Greece is highly structurally complex due to its position at the junction between the European and African tectonic plates.

Geology of the Czech Republic

The geology of the Czech Republic is very tectonically complex, split between the Western Carpathian Mountains and the Bohemian Massif.

The geology of Syria includes ancient metamorphic rocks from the Precambrian belonging to the Arabian Craton, as well as numerous marine sedimentary rocks and some erupted basalt up to recent times.

Geology of Italy Overview of the geology of Italy

The geology of Italy includes mountain ranges such as the Alps, the Dolomites and the Apennines formed from the uplift of igneous and primarily marine sedimentary rocks all formed since the Paleozoic. Some active volcanoes are located in Insular Italy.

The geology of Yukon includes sections of ancient Precambrian Proterozoic rock from the western edge of the proto-North American continent Laurentia, with several different island arc terranes added through the Paleozoic, Mesozoic and Cenozoic, driving volcanism, pluton formation and sedimentation.

References

  1. Moores, E.M.; Fairbridge, Rhodes W. (1997). Encyclopedia of European & Asian Regional Geology. Springer. pp. 256–259.
  2. Moores & Fairbridge 1997, pp. 88–89.
  3. Moores & Fairbridge 1997, p. 88.
  4. Moores & Fairbridge 1997, p. 89.
  5. Moores & Fairbridge 1997, p. 87.
  6. Moores & Fairbridge 1997, p. 91.