Pancreatic elastase

Last updated
Pancreatic elastase
Identifiers
EC no. 3.4.21.36
CAS no. 848900-32-3
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
Pancreatic elastase II
Identifiers
EC no. 3.4.21.71
CAS no. 75603-19-9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
Pancreatic endopeptidase E
Identifiers
EC no. 3.4.21.70
CAS no. 68073-27-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Pancreatic elastase is a form of elastase that is produced in the acinar cells of the pancreas, initially produced as an inactive zymogen and later activated in the duodenum by trypsin. Elastases form a subfamily of serine proteases, characterized by a distinctive structure consisting of two beta barrel domains converging at the active site that hydrolyze amides and esters amongst many proteins in addition to elastin, a type of connective tissue that holds organs together. Pancreatic elastase 1 is a serine endopeptidase, a specific type of protease that has the amino acid serine at its active site. Although the recommended name is pancreatic elastase, it can also be referred to as elastase-1, pancreatopeptidase, PE, or serine elastase.

Contents

The first isozyme, pancreatic elastase 1, was initially thought to be expressed in the pancreas. However it was later discovered that it was the only chymotrypsin-like elastase that was not expressed in the pancreas. In fact, pancreatic elastase is expressed in basal layers of epidermis (at protein level). Hence pancreatic elastase 1 has been renamed elastase 1 (ELA1) or chymotrypsin-like elastase family, member 1 (CELA1). [1] For a period of time, it was thought that ELA1 / CELA1 was not transcribed into a protein. [2] However it was later discovered that it was expressed in skin keratinocytes. [3]

Clinical literature that describes human elastase 1 activity in the pancreas or fecal material is actually referring to chymotrypsin-like elastase family, member 3B (CELA3B). [1]

Structure

Pancreatic elastase is a compact globular protein with a hydrophobic core. This enzyme is formed by three subunits. Each subunit binds one calcium ion (cofactor). There are three important metal-binding sites in amino acids 77, 82, 87. [4] The catalytic triad , located in the active site is formed by three hydrogen-bonded amino acid residues (H71, D119, S214), and plays an essential role in the cleaving ability of all proteases. It is composed of a single peptide chain of 240 amino acids and contains 4 disulfide bridges. It has a high degree of sequence identity with pancreatic elastases that correspond to other species, such as the rat's, with whom it shares 86% of its sequence. [5] Its enzymatic activity is a result of the specific three-dimensional conformation which its single polypeptide chain adopts, and therefore, activity is lost by denaturation and/or conformational changes.[ citation needed ]

Inhibitors

Elafin, the skin-derived elastase inhibitor, has been shown to be a potent and specific inhibitor of both the porcine homolog of ELA1 and human leukocyte elastase in vitro. Elafin is expressed by epidermal keratinocytes under hyperproliferative conditions such as psoriasis and wound healing. It has also been reported to be present in many other adult epithelia that are exposed to environmental stimuli: tongue, plate, lingual tonsils, gingiva, pharynx, epiglottis, vocal fold, esophagus, uterine cervix, vagina, and hair follicles. In all these tissues, the presence of inflammatory cells is physiologic and elafin expression is believed to protect against leukocyte proteases, thereby helping to maintain epithelial integrity.[ citation needed ]

Elafin on the contrary has never been found in the basal layer in any type of epithelial tissue. Indeed, elafin is virtually absent in normal human epidermis. The other known elastase inhibitor, SLPI, however, has been reported to be expressed in the basal keratinocytes suggesting that this may be the major elastase inhibitor in normal epidermis.[ citation needed ]

Alpha 1-antitrypsin and alpha-2-macroglobulin are human serum protease inhibitors that completely inhibit the general proteolytic activity of pancreatic elastase 1 and 2. It has been observed that a protease must be active in order to bind to these two inhibitors. Studies proved that the activity of elastase 2 was enhanced in 25-250 mM NaCl. The activity of elastase 2 in NaCl approached approximately twice the activity without NaCl. Elastase 1 is slightly inhibited above 150 mM NaCl [6]

Clinical significance

Mutations of the CELA1 gene were suspected to be associated with diffuse nonepidermolytic palmoplantar keratoderma (diffuse NEPPK). [3] However the suspected sequence variant was fully functional and did not strongly associate with the disease. More recently, a specific mutation in the KRT6C gene has been linked to some cases of diffuse NEPPK. [7]

A possible polymorphism of the CELA1 gene coding this protein was found. On a secondary structure level, this polymorphism manifests itself in an excision of a short sequence of CELA1. The disappeared sequence carries the key amino acid residues Val-227 and Thr-239, which contribute to the substrate specificity of elastase I (highlighted in Figure 3), as well as five of the eight amino acids involved in the primary contact of the elafin(inhibitor)/elastase complex formation. These observations imply that the sequence variant might modify the substrate specificity of the enzyme and abolish the inhibitor binding capability. Though there were no obvious pathogenic epidermal abnormalities associated with the truncated ELA1 variant, it is possible that carriers of the polymorphism may be at greater risk of developing the common skin diseases such as psoriasis and eczema (genetic and histologic studies will be required to investigate the role of ELA1 in these common epidermal disorders.). [3]

Biosynthesis

Pancreatic elastase is formed by activation of proelastase from mammalian pancreas by trypsin. After processing to proelastase, it is stored in the zymogen granules and then activated to elastase in the duodenum by the tryptic cleavage of a peptide bond in the inactive form of the precursor molecule. [8] This process results in the removal of an activation peptide from the N-terminal, that enables the enzyme to adopt its native conformation.[ citation needed ]

Isozymes

Humans have five chymotrypsin-like elastase genes which encode the structurally similar proteins:

FamilyGene symbolProtein nameEC number
ApprovedPreviousApprovedPrevious
chymotrypsin-
like
CELA1 ELA1chymotrypsin-like elastase family, member 1elastase 1, pancreatic EC 3.4.21.36
CELA2A ELA2Achymotrypsin-like elastase family, member 2Aelastase 2A, pancreatic EC 3.4.21.71
CELA2B ELA2Bchymotrypsin-like elastase family, member 2Belastase 2B, pancreatic EC 3.4.21.71
CELA3A ELA3Achymotrypsin-like elastase family, member 3Aelastase 3A, pancreatic EC 3.4.21.70
CELA3B ELA3Bchymotrypsin-like elastase family, member 3Belastase 3B, pancreatic EC 3.4.21.70

Post-translational modifications

Glycosylation at Asn79 and Asn233. [9]

Gene

The gene that codes for pancreatic elastase 1 is CELA1 (synonym: ELA1) Pancreatic elastase 1 is encoded by a single genetic locus on chromosome 12. Studies of human pancreatic elastase 1 have shown that this serine protease maps to the chromosomal region 12q13 [10] and it is close to a locus for an autosomal dominant skin disease, Diffuse nonepidermolytic palmoplantar keratoderma. [3]

Reactions

Reaction catalysed by pancreatic elastase 1. This image represents the hydrolysis of the succinyl-Ala-Ala-Ala-p-nitroanalide. The addition of one water molecule provokes the hydrolysis of the molecule and the release of p-nitroaniline. Reaction catalysed by pancreatic elastase1.png
Reaction catalysed by pancreatic elastase 1. This image represents the hydrolysis of the succinyl-Ala-Ala-Ala-p-nitroanalide. The addition of one water molecule provokes the hydrolysis of the molecule and the release of p-nitroaniline.

The hydrolysis that elastases bring about occur in several steps, starting with the formation of a complex between elastase and its substrate, with the carbonyl carbon positioned near the nucleophilic serine, followed by a nucleophillic attack that forms an acyl-enzyme intermediate (a pair of electrons from the double bond of the carbonyl oxygen moves to the oxygen) while the first product is released. The intermediate is then hydrolyzed in a deacylation step, regenerating the active enzyme and resulting in the release of the second product ( the electron-deficient carbonyl carbon re-forms the double bond with the oxygen and the C-terminus of the peptide is released. It preferentially cleaves peptide bonds at the carbonyl end of amino acid residues with small hydrophobic side chains such as glycine, valine, leucine, isoleucine and alanine. The wide specificity of elastases for non-aromatic uncharged side chains can explain its ability to break down native elastin. [11]

Use in diagnostic tests

Human pancreatic elastase 1 (E1) is not degraded in intestinal transit, so that its concentration in feces reflects exocrine pancreatic function. In inflammation of the pancreas, E1 is released into the bloodstream. Thus the quantification of pancreatic elastase 1 in serum allows diagnosis or exclusion of acute pancreatitis. [12]

Main indications:

Method of detection:

Reference concentration to interpret Pancreatic Elastase results: For adults and children after the first month of life

Related Research Articles

<span class="mw-page-title-main">Chymotrypsin</span> Digestive enzyme

Chymotrypsin (EC 3.4.21.1, chymotrypsins A and B, alpha-chymar ophth, avazyme, chymar, chymotest, enzeon, quimar, quimotrase, alpha-chymar, alpha-chymotrypsin A, alpha-chymotrypsin) is a digestive enzyme component of pancreatic juice acting in the duodenum, where it performs proteolysis, the breakdown of proteins and polypeptides. Chymotrypsin preferentially cleaves peptide amide bonds where the side chain of the amino acid N-terminal to the scissile amide bond (the P1 position) is a large hydrophobic amino acid (tyrosine, tryptophan, and phenylalanine). These amino acids contain an aromatic ring in their side chain that fits into a hydrophobic pocket (the S1 position) of the enzyme. It is activated in the presence of trypsin. The hydrophobic and shape complementarity between the peptide substrate P1 side chain and the enzyme S1 binding cavity accounts for the substrate specificity of this enzyme. Chymotrypsin also hydrolyzes other amide bonds in peptides at slower rates, particularly those containing leucine at the P1 position.

<span class="mw-page-title-main">Proteolysis</span> Breakdown of proteins into smaller polypeptides or amino acids

Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, but may also occur by intra-molecular digestion.

<span class="mw-page-title-main">Trypsin</span> Family of digestive enzymes

Trypsin is an enzyme in the first section of the small intestine that starts the digestion of protein molecules by cutting long chains of amino acids into smaller pieces. It is a serine protease from the PA clan superfamily, found in the digestive system of many vertebrates, where it hydrolyzes proteins. Trypsin is formed in the small intestine when its proenzyme form, the trypsinogen produced by the pancreas, is activated. Trypsin cuts peptide chains mainly at the carboxyl side of the amino acids lysine or arginine. It is used for numerous biotechnological processes. The process is commonly referred to as trypsinogen proteolysis or trypsinization, and proteins that have been digested/treated with trypsin are said to have been trypsinized. Trypsin was discovered in 1876 by Wilhelm Kühne and was named from the Ancient Greek word for rubbing since it was first isolated by rubbing the pancreas with glycerin.

<span class="mw-page-title-main">Protease</span> Enzyme that cleaves other proteins into smaller peptides

A protease is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in numerous biological pathways, including digestion of ingested proteins, protein catabolism, and cell signaling.

<span class="mw-page-title-main">Elastase</span> Enzyme

In molecular biology, elastase is an enzyme from the class of proteases (peptidases) that break down proteins. In particular, it is a serine protease.

<span class="mw-page-title-main">Serine protease</span> Class of enzymes

Serine proteases are enzymes that cleave peptide bonds in proteins. Serine serves as the nucleophilic amino acid at the (enzyme's) active site. They are found ubiquitously in both eukaryotes and prokaryotes. Serine proteases fall into two broad categories based on their structure: chymotrypsin-like (trypsin-like) or subtilisin-like.

<span class="mw-page-title-main">Digestive enzyme</span> Class of enzymes

Digestive enzymes are a group of enzymes that break down polymeric macromolecules into their smaller building blocks, in order to facilitate their absorption into the cells of the body. Digestive enzymes are found in the digestive tracts of animals and in the tracts of carnivorous plants, where they aid in the digestion of food, as well as inside cells, especially in their lysosomes, where they function to maintain cellular survival. Digestive enzymes of diverse specificities are found in the saliva secreted by the salivary glands, in the secretions of cells lining the stomach, in the pancreatic juice secreted by pancreatic exocrine cells, and in the secretions of cells lining the small and large intestines.

Trypsinogen is the precursor form of trypsin, a digestive enzyme. It is produced by the pancreas and found in pancreatic juice, along with amylase, lipase, and chymotrypsinogen. It is cleaved to its active form, trypsin, by enteropeptidase, which is found in the intestinal mucosa. Once activated, the trypsin can cleave more trypsinogen into trypsin, a process called autoactivation. Trypsin cleaves the peptide bond on the carboxyl side of basic amino acids such as arginine and lysine.

<span class="mw-page-title-main">Enteropeptidase</span> Class of enzymes

Enteropeptidase is an enzyme produced by cells of the duodenum and is involved in digestion in humans and other animals. Enteropeptidase converts trypsinogen into its active form trypsin, resulting in the subsequent activation of pancreatic digestive enzymes. Absence of enteropeptidase results in intestinal digestion impairment.

<span class="mw-page-title-main">Catalytic triad</span> Set of three coordinated amino acids

A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes. An acid-base-nucleophile triad is a common motif for generating a nucleophilic residue for covalent catalysis. The residues form a charge-relay network to polarise and activate the nucleophile, which attacks the substrate, forming a covalent intermediate which is then hydrolysed to release the product and regenerate free enzyme. The nucleophile is most commonly a serine or cysteine amino acid, but occasionally threonine or even selenocysteine. The 3D structure of the enzyme brings together the triad residues in a precise orientation, even though they may be far apart in the sequence.

<span class="mw-page-title-main">Neutrophil elastase</span> Protein-coding gene in the species Homo sapiens

Neutrophil elastase is a serine proteinase in the same family as chymotrypsin and has broad substrate specificity. Neutrophil elastase is secreted by neutrophils during inflammation, and destroys bacteria and host tissue. It also localizes to neutrophil extracellular traps (NETs), via its high affinity for DNA, an unusual property for serine proteases.

<span class="mw-page-title-main">Cathepsin G</span> Protein-coding gene in the species Homo sapiens

Cathepsin G is a protein that in humans is encoded by the CTSG gene. It is one of the three serine proteases of the chymotrypsin family that are stored in the azurophil granules, and also a member of the peptidase S1 protein family. Cathepsin G plays an important role in eliminating intracellular pathogens and breaking down tissues at inflammatory sites, as well as in anti-inflammatory response.

<span class="mw-page-title-main">SLPI</span> Protein-coding gene in the species Homo sapiens

Antileukoproteinase, also known as secretory leukocyte protease inhibitor (SLPI), is an enzyme that in humans is encoded by the SLPI gene. SLPI is a highly cationic single-chain protein with eight intramolecular disulfide bonds. It is found in large quantities in bronchial, cervical, and nasal mucosa, saliva, and seminal fluids. SLPI inhibits human leukocyte elastase, human cathepsin G, human trypsin, neutrophil elastase, and mast cell chymase. X-ray crystallography has shown that SLPI has two homologous domains of 53 and 54 amino acids, one of which exhibits anti-protease activity. The other domain is not known to have any function.

<span class="mw-page-title-main">Elafin</span> Mammalian protein found in Homo sapiens

Elafin, also known as peptidase inhibitor 3 or skin-derived antileukoprotease (SKALP), is a protein that in humans is encoded by the PI3 gene.

<span class="mw-page-title-main">CELA3B</span> Protein-coding gene in the species Homo sapiens

Chymotrypsin-like elastase family member 3B also known as elastase-3B, protease E, or fecal elastase is an enzyme that in humans is encoded by the CELA3B gene.

<span class="mw-page-title-main">CELA3A</span> Protein-coding gene in the species Homo sapiens

Chymotrypsin-like elastase family member 3A is an enzyme that in humans is encoded by the CELA3A gene.

<span class="mw-page-title-main">Kunitz STI protease inhibitor</span>

Kunitz soybean trypsin inhibitor is a type of protein contained in legume seeds which functions as a protease inhibitor. Kunitz-type Soybean Trypsin Inhibitors are usually specific for either trypsin or chymotrypsin. They are thought to protect seeds against consumption by animal predators.

<span class="mw-page-title-main">CELA1</span> Enzyme-encoding gene in humans

Chymotrypsin-like elastase family member 1 (CELA1) also known as elastase-1 (ELA1) is an enzyme that in humans is encoded by the CELA1 gene. Elastases form a subfamily of serine proteases that hydrolyze many proteins in addition to elastin. Humans have six elastase genes which encode the structurally similar proteins elastase 1, 2, 2A, 2B, 3A, and 3B.

<span class="mw-page-title-main">CELA2B</span> Protein-coding gene in the species Homo sapiens

Chymotrypsin-like elastase family member 2B is and enzyme that in humans is encoded by the CELA2B gene.

An endopeptidase inhibitor is a drug that inhibits one or more endopeptidase enzymes. Endopeptidases are one of two types of proteases, the other being exopeptidases. Endopeptidases cleave peptide bonds of non-terminal amino acids, whereas exopeptidases break terminal bonds, resulting in the release of a single amino acid or dipeptide from the peptide chain.

References

  1. 1 2 EntrezGene 1990
  2. Rose SD, MacDonald RJ (June 1997). "Evolutionary silencing of the human elastase I gene (ELA1)". Hum. Mol. Genet. 6 (6): 897–903. doi: 10.1093/hmg/6.6.897 . PMID   9175736.
  3. 1 2 3 4 Talas U, Dunlop J, Khalaf S, Leigh IM, Kelsell DP (January 2000). "Human elastase 1: evidence for expression in the skin and the identification of a frequent frameshift polymorphism". J. Invest. Dermatol. 114 (1): 165–70. doi: 10.1046/j.1523-1747.2000.00825.x . PMID   10620133.
  4. Universal protein resource accession number Q9UNI1 at UniProt.
  5. "Elastase". Worthington Enzyme Manual.
  6. Largman C, Brodrick JW, Geokas MC (1976). "Purification and characterization of two human pancreatic elastases". Biochemistry. 15 (11): 2491–500. doi:10.1021/bi00656a036. PMID   819031.
  7. Akasaka E, Nakano H, Nakano A, Toyomaki Y, Takiyoshi N, Rokunohe D, Nishikawa Y, Korekawa A, Matsuzaki Y, Mitsuhashi Y, Sawamura D (2011). "Diffuse and focal palmoplantar keratoderma can be caused by a keratin 6c mutation". Br. J. Dermatol. 165 (6): 1290–2. doi: 10.1111/j.1365-2133.2011.10552.x . PMID   21801157. S2CID   36039184.
  8. Gertler A, Birk Y (1970). "Isolation and characterization of porcine proelastase". Eur. J. Biochem. 12 (1): 170–6. doi: 10.1111/j.1432-1033.1970.tb00835.x . PMID   5461547.
  9. "CELA1 Gene". GeneCards.
  10. Davies RL, Yoon SJ, Weissenbach J, Ward D, Krauter K, Kucherlapati R (October 1995). "Physical mapping of the human ELA1 gene between D12S361 and D12S347 on chromosome 12q13". Genomics. 29 (3): 766–8. doi: 10.1006/geno.1995.9939 . PMID   8575772.
  11. Shotton DM (1970). "[7] Elastase". Elastase. Methods in Enzymology. Vol. 19. pp. 113–140. doi:10.1016/0076-6879(70)19009-4. ISBN   9780121818814.
  12. Stein J, Schoonbroodt D, Jung M, Lembcke B, Caspary WF (1996). "Mesure de l'élastase fécale par immunoréactivité: une nouvelle approche indirecte de la fonction pancréatique" [Measurement of fecal elastase 1 by immunoreactivity: A new indirect test of the pancreatic function]. Gastroentérologie Clinique et Biologique (in French). 20 (5): 424–9. PMID   8761139.
  13. Gonzales AC, Vieira SM, Maurer RL, Silva FA, Silveira TR (2011). "Use of monoclonal faecal elastase-1 concentration for pancreatic status assessment in cystic fibrosis patients". J Pediatr (Rio J). 87 (2): 157–62. doi:10.2223/JPED.2075. PMID   21503378.
  14. Löser C, Möllgaard A, Fölsch UR (October 1996). "Faecal elastase 1: a novel, highly sensitive, and specific tubeless pancreatic function test". Gut. 39 (4): 580–6. doi:10.1136/gut.39.4.580. PMC   1383273 . PMID   8944569.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.