Chytridiomycota

Last updated

Contents

Chytridiomycota
Spizellomycete.jpg
Sporangium of a spizellomycete
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Chytridiomycota
Hibbett et al. (2007)
Classes/orders

Chytridiomycota are a division of zoosporic organisms in the kingdom Fungi, informally known as chytrids. The name is derived from the Ancient Greek χυτρίδιον (khutrídion), meaning "little pot", describing the structure containing unreleased zoospores. Chytrids are one of the earliest diverging fungal lineages, and their membership in kingdom Fungi is demonstrated with chitin cell walls, a posterior whiplash flagellum, absorptive nutrition, use of glycogen as an energy storage compound, and synthesis of lysine by the α-amino adipic acid (AAA) pathway. [2] [3]

Chytrids are saprobic, degrading refractory materials such as chitin and keratin, and sometimes act as parasites. [4] There has been a significant increase in the research of chytrids since the discovery of Batrachochytrium dendrobatidis , the causal agent of chytridiomycosis. [5] [6]

Classification

Species of Chytridiomycota have traditionally been delineated and classified based on development, morphology, substrate, and method of zoospore discharge. [7] [4] However, single spore isolates (or isogenic lines) display a great amount of variation in many of these features; thus, these features cannot be used to reliably classify or identify a species. [7] [4] [8] Currently, taxonomy in Chytridiomycota is based on molecular data, zoospore ultrastructure and some aspects of thallus morphology and development. [7] [8]

In an older and more restricted sense (not used here), the term "chytrids" referred just to those fungi in the class Chytridiomycetes. Here, the term "chytrid" refers to all members of Chytridiomycota. [2]

The chytrids have also been included among the Protoctista, [7] but are now regularly classed as fungi.

In older classifications, chytrids, except the recently established order Spizellomycetales, were placed in the class Phycomycetes under the subphylum Myxomycophyta of the kingdom Fungi. Previously, they were placed in the Mastigomycotina as the class Chytridiomycetes. [9] The other classes of the Mastigomycotina, the Hyphochytriomycetes and oomycetes, were removed from the fungi to be classified as heterokont pseudofungi. [10]

The class Chytridiomycetes has over 750 chytrid species distributed among ten orders. [11] [12] [13] Additional classes include the Monoblepharidomycetes, [14] with two orders, and the Hyaloraphidiomycetes with a single order. [15]

Molecular phylogenetics, and other techniques such as ultrastructure analysis, has greatly increased the understanding of chytrid phylogeny, and led to the formation of several new zoosporic fungal phyla:

Life cycle and body plan

Chytridiomycota are unusual among the Fungi in that they reproduce with zoospores. [4] [18] For most members of Chytridiomycota, sexual reproduction is not known. Asexual reproduction occurs through the release of zoospores (presumably) derived through mitosis. [4]

Where it has been described, sexual reproduction of chytrids occurs via a variety of methods. It is generally accepted that the resulting zygote forms a resting spore, which functions as a means of surviving adverse conditions. [4] In some members, sexual reproduction is achieved through the fusion of isogametes (gametes of the same size and shape). This group includes the notable plant pathogens Synchytrium . Some algal parasites practice oogamy: A motile male gamete attaches itself to a nonmotile structure containing the female gamete. In another group, two thalli produce tubes that fuse and allow the gametes to meet and fuse. [4] In the last group, rhizoids of compatible strains meet and fuse. Both nuclei migrate out of the zoosporangium and into the conjoined rhizoids where they fuse. The resulting zygote germinates into a resting spore. [2]

Sexual reproduction is common and well known among members of the Monoblepharidomycetes. Typically, these chytrids practice a version of oogamy: The male is motile and the female is stationary. This is the first occurrence of oogamy in kingdom Fungi. [3] Briefly, the monoblephs form oogonia, which give rise to eggs, and antheridia, which give rise to male gametes. Once fertilized, the zygote either becomes an encysted or motile oospore, [4] which ultimately becomes a resting spore that will later germinate and give rise to new zoosporangia. [3]

Upon release from the germinated resting spore, zoospores seek out a suitable substrate for growth using chemotaxis or phototaxis. Some species encyst and germinate directly upon the substrate; others encyst and germinate a short distance away. Once germinated, enzymes released from the zoospore begin to break down the substrate and utilize it produce a new thallus. Thalli are coenocytic and usually form no true mycelium (having rhizoids instead).

Chytrids have several different growth patterns. Some are holocarpic, which means they only produce a zoosporangium and zoospores. Others are eucarpic, meaning they produce other structures, such as rhizoids, in addition to the zoosporangium and zoospores. Some chytrids are monocentric, meaning a single zoospore gives rise to a single zoosporangium. Others are polycentric, meaning one zoospore gives rise to many zoosporangium connected by a rhizomycelium. Rhizoids do not have nuclei while a rhizomycelium can. [3]

Growth continues until a new batch of zoospores are ready for release. Chytrids have a diverse set of release mechanisms that can be grouped into the broad categories of operculate or inoperculate. Operculate discharge involves the complete or incomplete detachment of a lid-like structure, called an operculum, allowing the zoospores out of the sporangium. Inoperculate chytrids release their zoospores through pores, slits, or papillae. [4]

Habitats

Chytrids are aquatic fungi, though those that thrive in the capillary network around soil particles are typically considered terrestrial. [7] [4] The zoospore is primarily a means of thoroughly exploring a small volume of water for a suitable substrate rather than a means of long-range dispersal. [19]

Chytrids have been isolated from a variety of aquatic habitats, including peats, bogs, rivers, ponds, springs, and ditches, and terrestrial habitats, such as acidic soils, alkaline soils, temperate forest soils, rainforest soils, Arctic and Antarctic soils. [7] [4] This has led to the belief that many chytrid species are ubiquitous and cosmopolitan. [7] [4] However, recent taxonomic work has demonstrated that this ubiquitous and cosmopolitan morphospecies hide cryptic diversity at the genetic and ultrastructural levels. [20] [21] It was first thought aquatic chytrids (and other zoosporic fungi) were primarily active in fall, winter, and spring. [4] However, recent molecular inventories of lakes during the summer indicate that chytrids are an active, diverse part of the eukaryotic microbial community. [22]

One of the least expected terrestrial environments the chytrid thrive in are periglacial soils. [23] The population of the Chytridiomycota species are able to be supported even though there is a lack of plant life in these frozen regions due to the large amounts of water in periglacial soil and pollen blowing up from below the timberline.

Ecological functions

Chytrid parasites of marine diatoms. (A) Chytrid sporangia on Pleurosigma sp. The white arrow indicates the operculate discharge pore. (B) Rhizoids (white arrow) extending into diatom host. (C) Chlorophyll aggregates localized to infection sites (white arrows). (D) & (E) Single hosts bearing multiple zoosporangia at different stages of development. The white arrow in panel (E) highlights branching rhizoids. (F) Endobiotic chytrid-like sporangia within diatom frustule; bars = 10 mm . Chytrid parasites of marine diatoms.jpg
Chytrid parasites of marine diatoms. (A) Chytrid sporangia on Pleurosigma sp. The white arrow indicates the operculate discharge pore. (B) Rhizoids (white arrow) extending into diatom host. (C) Chlorophyll aggregates localized to infection sites (white arrows). (D) & (E) Single hosts bearing multiple zoosporangia at different stages of development. The white arrow in panel (E) highlights branching rhizoids. (F) Endobiotic chytrid-like sporangia within diatom frustule; bars = 10  μm .
Pennate diatom from an Arctic meltpond, infected with two chytrid-like [zoo-]sporangium fungal pathogens (in false-colour red). Pennate diatom infected with two chytrid-like fungal pathogens.png
Pennate diatom from an Arctic meltpond, infected with two chytrid-like [zoo-]sporangium fungal pathogens (in false-colour red).

Batrachochytrium dendrobatidis

The chytrid Batrachochytrium dendrobatidis is responsible for chytridiomycosis, a disease of amphibians. Discovered in 1998 in Australia and Panama this disease is known to kill amphibians in large numbers, and has been suggested as a principal cause for the worldwide amphibian decline. Outbreaks of the fungus were found responsible for killing much of the Kihansi Spray Toad population in its native habitat of Tanzania, [26] as well as the extinction of the golden toad in 1989. Chytridiomycosis has also been implicated in the presumed extinction of the Southern Gastric Brooding Frog, [27] last seen in the wild in 1981, and the Northern Gastric Brooding Frog, last recorded in the wild in March 1985. [28] The process leading to frog mortality is thought to be the loss of essential ions through pores made in the epidermal cells by the chytrid during its replication. [29]

Recent research has revealed that elevating salt levels slightly may be able to cure chytridiomycosis in some Australian frog species, [30] although further experimentation is needed.

Other parasites

Chytrids mainly infect algae and other eukaryotic and prokaryotic microbes. The infection can be so severe as to control primary production within the lake. [3] [31] It has been suggested that parasitic chytrids have a large effect on lake and pond food webs. [32] Chytrids may also infect plant species; in particular, Synchytrium endobioticum is an important potato pathogen. [33]

Saprobes

Arguably, the most important ecological function chytrids perform is decomposition. [7] These ubiquitous and cosmopolitan organisms are responsible for decomposition of refractory materials, such as pollen, cellulose, chitin, and keratin. [7] [4] There are also chytrids that live and grow on pollen by attaching threadlike structures, called rhizoids, onto the pollen grains. [34] This mostly occurs during asexual reproduction because the zoospores that become attached to the pollen continuously reproduce and form new chytrids that will attach to other pollen grains for nutrients. This colonization of pollen happens during the spring time when bodies of water accumulate pollen falling from trees and plants. [4]

Fossil record

The earliest fossils of chytrids are from the Scottish Rhynie chert, a Devonian-age lagerstätte with anatomical preservation of plants and fungi. Among the microfossils are chytrids preserved as parasites on rhyniophytes. These fossils closely resemble the modern genus Allomyces . [35] Holocarpic chytrid remains were found in cherts from Combres in central France that date back to the late Visean. These remains were found along with eucarpic remains and are ambiguous in nature although they are thought to be of chytrids. [36] Other chytrid-like fossils were found in cherts from the upper Pennsylvanian in the Saint-Etienne Basin in France, dating between 300~350  ma. [37]

In fictional media

The novel Tom Clancy's Splinter Cell: Fallout (2007) features a species of chytrid that feeds on petroleum and oil-based products. In the story the species is modified using nuclear radiation, to increase the rate at which it feeds on oil. It is then used by Islamic extremists in an attempt to destroy the world's oil supplies, thereby taking away the technological advantage of the United States. [38]

Related Research Articles

<span class="mw-page-title-main">Zoospore</span> Life cycle stage of lower organisms

A zoospore is a motile asexual spore that uses a flagellum for locomotion in aqueous or moist environments. Also called a swarm spore, these spores are created by some protists, bacteria, and fungi to propagate themselves. Certain zoospores are infectious and transmittable, such as Batrachochytrium dendrobatidis, a fungal zoospore that causes high rates of mortality in amphibians.

Chytridiomycetes is a class of fungi. Members are found in soil, fresh water, and saline estuaries. They are first known from the Rhynie chert. It has recently been redefined to exclude the taxa Neocallimastigomycota and Monoblepharidomycetes, which are now a phylum and a sister-class respectively.

<span class="mw-page-title-main">Chytridiomycosis</span> Amphibian disease

Chytridiomycosis is an infectious disease in amphibians, caused by the chytrid fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans. Chytridiomycosis has been linked to dramatic population declines or extinctions of amphibian species in western North America, Central America, South America, eastern Australia, east Africa (Tanzania), and Dominica and Montserrat in the Caribbean. Much of the New World is also at risk of the disease arriving within the coming years. The fungus is capable of causing sporadic deaths in some amphibian populations and 100% mortality in others. No effective measure is known for control of the disease in wild populations. Various clinical signs are seen by individuals affected by the disease. A number of options are possible for controlling this disease-causing fungus, though none has proved to be feasible on a large scale. The disease has been proposed as a contributing factor to a global decline in amphibian populations that apparently has affected about 30% of the amphibian species of the world. Some research found evidence insufficient for linking chytrid fungi and chytridiomycosis to global amphibian declines, but more recent research establishes a connection and attributes the spread of the disease to its transmission through international trade routes into native ecosystems.

<i>Batrachochytrium dendrobatidis</i> Species of fungus

Batrachochytrium dendrobatidis, also known as Bd or the amphibian chytrid fungus, is a fungus that causes the disease chytridiomycosis in amphibians.

Neocallimastigomycota is a phylum containing anaerobic fungi, which are symbionts found in the digestive tracts of larger herbivores. Anaerobic fungi were originally placed within phylum Chytridiomycota, within Order Neocallimastigales but later raised to phylum level, a decision upheld by later phylogenetic reconstructions. It encompasses only one family.

Hyphochytrids are eukaryotic organisms in the group of Stramenopiles (Heterokonta).

<span class="mw-page-title-main">Rhizophydiales</span> Order of fungi

Rhizophydiales are an important group of chytrid fungi. They are found in soil as well as marine and fresh water habitats where they function as parasites and decomposers.

<span class="mw-page-title-main">Spizellomycetales</span> Order of fungi

Spizellomycetales is an order of fungi in the Chytridiomycetes. Spizellomycetalean chytrids are essentially ubiquitous zoospore-producing fungi found in soils where they decompose pollen. Recently they have also been found in dung and harsh alpine environments, greatly expanding the range of habitats where one can expect to find these fungi.

<span class="mw-page-title-main">Blastocladiomycota</span> Phylum of flagellated fungi

Blastocladiomycota is one of the currently recognized phyla within the kingdom Fungi. Blastocladiomycota was originally the order Blastocladiales within the phylum Chytridiomycota until molecular and zoospore ultrastructural characters were used to demonstrate it was not monophyletic with Chytridiomycota. The order was first erected by Petersen for a single genus, Blastocladia, which was originally considered a member of the oomycetes. Accordingly, members of Blastocladiomycota are often referred to colloquially as "chytrids." However, some feel "chytrid" should refer only to members of Chytridiomycota. Thus, members of Blastocladiomycota are commonly called "blastoclads" by mycologists. Alternatively, members of Blastocladiomycota, Chytridiomycota, and Neocallimastigomycota lumped together as the zoosporic true fungi. Blastocladiomycota contains 5 families and approximately 12 genera. This early diverging branch of kingdom Fungi is the first to exhibit alternation of generations. As well, two (once) popular model organisms—Allomyces macrogynus and Blastocladiella emersonii—belong to this phylum.

<span class="mw-page-title-main">Entorrhizomycetes</span> Class of fungi

Entorrhizomycetes is the sole class in the phylum Entorrhizomycota, within the Fungi subkingdom Dikarya along with Basidiomycota and Ascomycota. It contains three genera and is a small group of teliosporic root parasites that form galls on plants in the Juncaceae (rush) and Cyperaceae (sedge) families. Prior to 2015 this phylum was placed under the subdivision Ustilaginomycotina. A 2015 study did a "comprehensive five-gene analyses" of Entorrhiza and concluded that the former class Entorrhizomycetes is possibly either a close sister group to the rest of Dikarya or Basidiomycota.

<i>Rozella</i> Genus of fungi

Rozella is a fungal genus of obligate endoparasites of a variety of hosts, including Oomycota, Chytridiomycota, and Blastocladiomycota. Rozella was circumscribed by French mycologist Marie Maxime Cornu in 1872. Considered one of the earliest diverging lineages of fungi, the widespread genus contains 27 species, with the most well studied being Rozella allomycis. Rozella is a member of a large clade of fungi referred to as the Cryptomycota/Rozellomycota. While some can be maintained in dual culture with the host, most have not been cultured, but they have been detected, using molecular techniques, in soil samples, and in freshwater and marine ecosystems. Zoospores have been observed, along with cysts, and the cells of some species are attached to diatoms.

<i>Synchytrium</i> Genus of fungi

Synchytrium is a large genus of plant pathogens within the phylum Chytridiomycota. Species are commonly known as false rust or wart disease. Approximately 200 species are described, and all are obligate parasites of angiosperms, ferns, or mosses. Early species were mistakenly classified among the higher fungi because of their superficial similarity to the rust fungi. Anton de Bary and Mikhail S. Woronin recognized the true nature of these fungi and established the genus to accommodate Synchytrium taraxaci, which grows on dandelions, and S. succisae, which grows on Succisa pratensis. Synchytrium taraxaci is the type of the genus. The genus has been divided into 6 subgenera based on differences in life cycles.

Olpidium is a fungal genus in the family Olpidiaceae. Members of Olpidium are zoosporic pathogens of plants, animals, fungi, and oomycetes.

<i>Batrachochytrium salamandrivorans</i> Species of pathogenic chytrid fungus that infects amphibian species

Batrachochytrium salamandrivorans (Bsal) is a pathogenic chytrid fungus that infects amphibian species. Although salamanders and newts seem to be the most susceptible, some anuran species are also affected. Bsal has emerged recently and poses a major threat to species in Europe and North America.

<i>Physoderma</i> Genus of fungi

Physoderma is a genus of chytrid fungi. Described by German botanist Karl Friedrich Wilhelm Wallroth in 1833, the genus contains some species that are parasitic on vascular plants, including P. alfalfae and P. maydis, causative agents of crown wart of alfalfa and brown spot of corn, respectively. Of the chytrid genera, Physoderma is the oldest. However, species were confused with the rust fungi, the genus Synchytrium, and the genus Protomyces of Ascomycota. Members of Physoderma are obligate parasites of pteridophytes and angiosperms. There are approximately 80 species within this genus.

Neocallimastix patriciarum is a species of fungus that lives in the rumen of sheep and other ruminant species. N. patriciarum is an obligate anaerobe and is an important component of the microbial population within the rumen. Only one of a few rumen fungi, this species is interesting and unique within the fungal world. Originally thought to be a flagellate protists, species within the phylum Neocallimastigomycota were first recognized as a fungus by Colin Orpin in 1975 when he demonstrated that they had cell walls of chitin

<i>Chytriomyces</i> Genus of fungi

Chytriomyces is the type genus of fungi in the family Chytriomycetaceae. The genus was described by mycologist John Sidney Karling in 1945. The family, created by Peter Letcher in 2011, contains species with a Group I-type zoospore, distinguishing it from Chytridiaceae members, which have a Group II-type zoospore.

Joyce E. Longcore is a mycologist and an associate research professor at the University of Maine. She is most well known for first culturing and describing Batrachochytrium dendrobatidis which is a species of Chytridiomycota fungi that was the first to be known to attack vertebrates. She continues to collect and isolate Chytridiomycota cultures for other researches to use for their own studies.

Spizellomyces punctatus is a chytrid fungus living in soil. It is a saprotrophic fungus that colonizes decaying plant material. Being an early diverging fungus, S. punctatus retains ancestral cellular features that are also found in animals and amoebae. Its pathogenic relatives, Batrachochytrium dendrobatidis and B. salamandrivorans, infect amphibians and cause global biodiversity loss. The pure culture of S. punctatus was first obtained by Koch.

Marilyn Rose Noyes Mollicone was an American botanist advancing mycology in Maine and advocating for naturalist education.

References

  1. Tedersoo, Leho; Sanchez-Ramırez, Santiago; Koljalg, Urmas; Bahram, Mohammad; Doring, Markus; Schigel, Dmitry; et al. (22 February 2018). "High-level classification of the Fungi and a tool for evolutionary ecological analyses". Fungal Diversity. 90 (1): 135–159. doi: 10.1007/s13225-018-0401-0 .
  2. 1 2 3 Alexopoulos, C.J.; Mims, C.W.; Blackwell, M. (1996). Introductory Mycology (4th ed.). John Wiley & Sons.
  3. 1 2 3 4 5
    Kendrick, Bryce (2000). The Fifth Kingdom (3rd ed.). Newburyport, MA: Focus Publishing.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    Sparrow, F.K. (1960). Aquatic Phycomyete (2nd ed.). Ann Arbor, MI: The University of Michigan Press.
  5. Blackwell, M. (2011). "The Fungi: 1,2,3 … million species?". American Journal of Botany. 98 (3): 426–438. doi:10.3732/ajb.1000298. PMID   21613136.
  6. Longcore, J.E.; Pessier, A.P.; Nichols, D.K. (1999). "Batrachochytirum dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians". Mycologia. 91 (2): 219–227. doi:10.1080/00275514.1999.12061011.
  7. 1 2 3 4 5 6 7 8 9
    Barr, D.J.S. (1990). "Phylum Chytridiomycota". In Margulis; Corliss; Melkonian; Chapman (eds.). Handbook of Protoctista. Boston, MA: Jones & Barlett. pp. 454–466.
  8. 1 2 Blackwell, W.H.; Letcher, P.M.; Powell, M.J. (2006). "Thallus development and the systematics of Chytridiomycota: an additional developmental pattern represented by Podochytrium". Mycotaxon. 97: 91–109.
  9. Ainsworth; Sparrow; Sussman, eds. (1973). The Fungi: An advanced treatise. Vol. IVB A – Taxonomic review with keys: Basidiomycetes and lower fungi. New York, NY: Academic Press.
  10. van der Auwera, G.; de Baere, R.; van de Peer, Y.; de Rijk, P.; van den Broeck, I.; de Wachter, R. (July 1995). "The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides". Mol. Biol. Evol. 12 (4): 671–678. doi:10.1093/oxfordjournals.molbev.a040245. PMID   7659021.
  11. "Chytrid fungi online – an NSF / PEET project website". Tuscaloosa, AL: University of Alabama. Retrieved 16 April 2022.
  12. Esser, K. (2014). The Mycota. Vol. VII A: Systematics and evolution (2nd ed.). Springer. p. 461. ISBN   978-3-642-55317-2.
  13. Powell; Letcher (20 January 2017) [2015]. "A new genus and family for the misclassified chytrid, Rhizophlyctis harderi". Mycologia. 107 (2): 419–431. doi:10.3852/14-223. PMID   25572098. S2CID   24144836 . Retrieved 23 August 2016.
  14. Dee, J.M.; Mollicone, M.; Longcore, J.E.; Roberson, R.W.; Berbee, M.L. (2015). "Cytology and molecular phylogenetics of Monoblepharidomycetes provide evidence for multiple independent origins of the hyphal habit in the Fungi". Mycologia. 107 (4): 710–728. doi:10.3852/14-275. ISSN   0027-5514. PMID   25911696. S2CID   40241045.
  15. 1 2 Misra, J.K.; Tewari, J.P.; Deshmukh, S.K. (10 January 2012). Systematics and Evolution of Fungi. CRC Press. p. 47. ISBN   978-1-57808-723-5.
  16. James, T.Y.; et al. (2006). "A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota)". Mycologia. 98 (6): 860–871. doi:10.3852/mycologia.98.6.860. PMID   17486963.
  17. "Item no. 42" (PDF). Index Fungorum.
  18. Hibbett; et al. (2007). "A higher-level phylogenetic classification of the Fungi". Mycologia. 111 (5): 509–547. doi:10.1016/j.mycres.2007.03.004. PMID   17572334. S2CID   4686378.
  19. Carlile, M.J. (1986). "The zoospore and its problems". In Ayres, Peter G.; Boddy, Lynne (eds.). Water, Fungi, and Plants. Vol. 11. Cambridge University Press.
  20. Letcher, P.M.; et al. (2008). "Rhizophlyctidales – a new order in Chytridiomycota". Mycological Research. 112 (9): 1031–1048. doi:10.1016/j.mycres.2008.03.007. PMID   18701267.
  21. Simmons, D.R. (2011). "Phylogeny of Powellomycetacea fam. nov. and description of Geranomyces variabilis gen. et comb. nov". Mycologia. 103 (6): 1411–1420. doi:10.3852/11-039. PMID   21558503. S2CID   42641493.
  22. Lefèvre, E.; Letcher, P.M.; Powell, M.J. (2012). "Temporal variation of the small eukaryotic community in two freshwater lakes: Emphasis on zoosporic fungi". Aquatic Microbial Ecology. 67 (2): 91–105. doi: 10.3354/ame01592 .
  23. Freeman, K.R. (2009). "Evidence that chytrids dominate fungal communities in high-elevation soils". Proceedings of the National Academy of Sciences of the USA . 106 (43): 18315–18320. Bibcode:2009PNAS..10618315F. doi: 10.1073/pnas.0907303106 . PMC   2775327 . PMID   19826082.
  24. Hassett, B.T.; Gradinger, R. (2016). "Chytrids dominate arctic marine fungal communities". Environ Microbiol. 18 (6): 2001–2009. doi:10.1111/1462-2920.13216. PMID   26754171.
  25. Kilias, Estelle S.; Junges, Leandro; Šupraha, Luka; Leonard, Guy; Metfies, Katja; Richards, Thomas A. (2020). "Chytrid fungi distribution and co-occurrence with diatoms correlate with sea ice melt in the Arctic Ocean". Communications Biology. 3 (1): 183. doi: 10.1038/s42003-020-0891-7 . PMC   7174370 . PMID   32317738. S2CID   216033140.
  26. Dean, Cornelia (1 February 2010). "Saving tiny toads without a home". The New York Times .
  27. Rheobatrachus silus species. Environment (Report). Profile and threats database. Government of Australia.
  28. Rheobatrachus eungellensis species. Environment (Report). Profile and threats database. Government of Australia.
  29. Voyles, J.; L. Berger; S. Young; et al. (2007). "Electrolyte depletion and osmotic imbalance in amphibians with chytridiomycosis". Diseases of Aquatic Organisms. 77 (2): 113–118. doi: 10.3354/dao01838 . PMID   17972752.
  30. "A salty cure for a deadly frog disease". Australian Broadcasting Corporation. 5 February 2018.
  31. Ibelings, B.W.; de Bruin, A.; Kagami, M.; Rijkeboer, M.; van Donk, E. (2004). "Host parasite interactions between freshwater phytolankton and chytrid fungi (chytridiomycota)". J. Phycol. 40 (3): 457–455. doi:10.1111/j.1529-8817.2004.03117.x. S2CID   86483962.
  32. Gleason, Frank H.; et al. (2008). "The ecology of chytrids in aquatic ecosystems: roles in food web dynamics". Fungal Biology Reviews. 22 (1): 17–25. doi:10.1016/j.fbr.2008.02.001.
  33. Hooker, W.J. (1981). Compendium of Potato Diseases. International Potato Center. pp. 36–7. ISBN   978-0-89054-027-5.
  34. "The Chytridiomycota". Mycology. nbm-mnb.ca. Natural History of Fungi. Retrieved 28 October 2013.
  35. Taylor, T.N.; Remy, W.; Hass, H. (1994). "Allomyces in the Devonian". Nature. 367 (6464): 601. Bibcode:1994Natur.367..601T. doi: 10.1038/367601a0 . S2CID   35912161.
  36. Krings, Michael; Dotzler, Nora; Taylor, Thomas; Galtier, Jean (2009). "Microfungi from the upper Visean (Mississippian) of central France: Chytridiomycota and chytrid-like remains of uncertain affinity". Review of Palaeobotany and Palynology. 156 (3–4): 319–328. doi:10.1016/j.revpalbo.2009.03.011.
  37. Krings, Michael; Jean Galtier; Thomas N. Taylor; Nora Dotzler (2009). "Chytrid-like microfungi in Biscalitheca cf. musata (Zygopteridales) from the Upper Pennsylvanian Grand-Croix cherts (Saint-Etienne Basin, France)". Review of Palaeobotany and Palynology. 157 (3–4): 309–316. doi:10.1016/j.revpalbo.2009.06.001.
  38. Michaels, David (2007). Tom Clancy's Splinter Cell: Fallout . Penguin Group. ISBN   978-0-425-21824-2.