Hortaea werneckii

Last updated

Hortaea werneckii
Hortaea-werneckii-fungus--causes-tinea-nigra.jpg
Micrograph of the fungus Hortaea werneckii
Scientific classification
Kingdom:
Division:
Class:
Order:
Family:
Genus:
Species:
H. werneckii
Binomial name
Hortaea werneckii
(Horta) Nishim. & Miyaji (1984)

Hortaea werneckii is a species of yeast in the family Teratosphaeriaceae. [1] It is a black yeast that is investigated for its remarkable halotolerance. [2] [3] While the addition of salt to the medium is not required for its cultivation, H. werneckii can grow in close to saturated NaCl solutions. [4] To emphasize this unusually wide adaptability, and to distinguish H. werneckii from other halotolerant fungi, which have lower maximum salinity limits, some authors describe H. werneckii as "extremely halotolerant". [4]

Several salt-tolerance mechanisms of H. werneckii have been studied on molecular level. [4] For example, it is known that its major compatible solutes are glycerol, erythritol, arabitol, and mannitol; melanin accumulation of the cell wall aids in retention of at least glycerol inside of the cell. [3] Several components of the high osmolarity glycerol (HOG) signalling pathway (which controls responses to osmotic shock) have been studied in detail and some seem to differ in function compared to their counterparts in Saccharomyces cerevisiae . [5] [6] [7] Adaptation to high concentrations of salt are also accompanied by changes in membrane lipid composition, mainly by increasing the unsaturation of the phospholipid fatty acids. [8] [9]

H. werneckii causes a rare superficial and non-invasive skin infection tinea nigra. [10] The typical symptoms are non-scaly, smooth, brown-black painless spots on the palms of hands and soles of feet.

The growth of H. werneckii in liquid media is often yeast-like, although it can switch to filamentous growth. The mechanism of the switch is not known. The cells appear brown because of melanin production. [3]

Whole genome sequencing of H. werneckii [11] [12] revealed a recent whole genome duplication, thought to be the only reported whole-genome duplication among ascomycetous yeasts besides the better known one in the Saccharomyces cerevisiae lineage. [13] Based on genome sequencing of additional strains, 10 out of 12 strains have a genome that was duplicated by several hybridizations between haploid strains, yielding formed stable diploids. Apart from these hybridization events, no signs of sexual reproduction were found. [14] As a consequence, the genome of H. werneckii is relatively large (49.9 Mb) with 15974 predicted genes. [12] Genes encoding metal cation transporters, which are thought to play a role in halotolerance, experienced several additional gene duplications at various points during their evolution. [11]

A homothallic mating locus was found in all sequenced genomes, although one of the mating genes may have been inactivated in some strains. Despite this, phylogenetic analyses and linkage disequilibrium analyses indicate that H. werneckii is asexual. [14]

Related Research Articles

A halophile is an extremophile that thrives in high salt concentrations. In chemical terms, halophile refers to a Lewis acidic species that has some ability to extract halides from other chemical species.

Halotolerance is the adaptation of living organisms to conditions of high salinity. Halotolerant species tend to live in areas such as hypersaline lakes, coastal dunes, saline deserts, salt marshes, and inland salt seas and springs. Halophiles are organisms that live in highly saline environments, and require the salinity to survive, while halotolerant organisms can grow under saline conditions, but do not require elevated concentrations of salt for growth. Halophytes are salt-tolerant higher plants. Halotolerant microorganisms are of considerable biotechnological interest.

<i>Aureobasidium pullulans</i> Species of fungus

Aureobasidium pullulans is a ubiquitous and generalistic black, yeast-like fungus that can be found in different environments. It is well known as a naturally occurring epiphyte or endophyte of a wide range of plant species without causing any symptoms of disease. A. pullulans has a high importance in biotechnology for the production of different enzymes, siderophores and pullulan. Furthermore, A. pullulans is used in biological control of plant diseases, especially storage diseases.

Pathogenic fungi are fungi that cause disease in humans or other organisms. Although fungi are eukaryotic, many pathogenic fungi are microorganisms. Approximately 300 fungi are known to be pathogenic to humans; their study is called "medical mycology". Fungal infections kill more people than either tuberculosis or malaria—about 2 million people per year.

<span class="mw-page-title-main">Wallemiomycetes</span> Class of fungi

The Wallemiomycetes are a class of fungi in the division Basidiomycota. It consists of the single order Wallemiales, containing the single family Wallemiaceae, which in turn contains the single genus Wallemia. The phylogenetic origin of the lineage was placed to various parts of Basidiomycota, but according to the analysis of a larger dataset it is a sister group of Agaricomycotina. The genus contains species of xerophilic molds that are found worldwide. The seven described species are distinguished by conidial size, xerotolerance, halotolerance, chaotolerance, growth temperature regimes, extracellular enzyme activity profiles, and secondary metabolite patterns. They are typically isolated from low-moisture foods, indoor air dust, salterns and soil. W. sebi is thought to be one of the causes of the hypersensitivity pneumonitis known as the farmer's lung disease, but since the other species were recognised and separated from W. sebi only recently, their role in the disease cannot be excluded.

Black yeasts, sometimes also black fungi, dematiaceous fungi, microcolonial fungi or meristematic fungi is a diverse group of slow-growing microfungi which reproduce mostly asexually. Only few genera reproduce by budding cells, while in others hyphal or meristematic (isodiametric) reproduction is preponderant. Black yeasts share some distinctive characteristics, in particular a dark colouration (melanisation) of their cell wall. Morphological plasticity, incrustation of the cell wall with melanins and presence of other protective substances like carotenoids and mycosporines represent passive physiological adaptations which enable black fungi to be highly resistant against environmental stresses. The term "polyextremotolerance" has been introduced to describe this phenotype, an example of which is the species Aureobasidium pullulans. Presence of 1,8-dihydroxynaphthalene melanin in the cell wall confers to the microfungi their characteristic olivaceous to dark brown/black colour.

<i>Wallemia ichthyophaga</i> Species of fungus

Wallemia ichthyophaga is one of the three species of fungi in the genus Wallemia, which in turn is the only genus of the class Wallemiomycetes. The phylogenetic origin of the lineage was placed to various parts of Basidiomycota, but according to the analysis of larger datasets it is a (495-million-years-old) sister group of Agaricomycotina. Although initially believed to be asexual, population genomics found evidence of recombination between strains and a mating type locus was identified in all sequenced genomes of the species.

Aureobasidium subglaciale, formerly known as Aureobasidium pullulans var. subglaciale, is a ubiquitous black, yeast-like fungus that is found in very cold habitats. As the name suggests, it was primarily isolated from subglacial ice of arctic glaciers. The species was established when the genomes of the four former varieties of Aureobasidium pullulans were sequenced and the large differences between them were discovered.

Halococcus salifodinae is an extremely halophilic archaeon, first isolated in an Austrian salt mine. It is a coccoid cell with pink pigmentation, its type strain being Blp.

Halococcus dombrowskii is an archaeon first isolated from a Permian alpine salt deposit. It is an extremely halophilic coccoid with type strain H4T.

Halobacterium noricense is a halophilic, rod-shaped microorganism that thrives in environments with salt levels near saturation. Despite the implication of the name, Halobacterium is actually a genus of archaea, not bacteria. H. noricense can be isolated from environments with high salinity such as the Dead Sea and the Great Salt Lake in Utah. Members of the Halobacterium genus are excellent model organisms for DNA replication and transcription due to the stability of their proteins and polymerases when exposed to high temperatures. To be classified in the genus Halobacterium, a microorganism must exhibit a membrane composition consisting of ether-linked phosphoglycerides and glycolipids.

Aureobasidium melanogenum, formerly known as Aureobasidium pullulans var. melanogenum is a ubiquitous black, yeast-like fungus that is found mainly in freshwater habitats. The species also includes strains causing human infections, which were previously classified as A. pullulans. It was named due to abundant melanin production and accumulation in the cell walls, which leads to dark green, brown or black appearance of the cells and colonies The species was established when the genomes of the four former varieties of Aureobasidium pullulans were sequenced and the large differences between them were discovered.

Aureobasidium namibiae, formerly known as Aureobasidium pullulans var. namibiae is a ubiquitous black, yeast-like fungus. It was described on the basis of only one strain isolated from dolomitic marble in Namibia. The species was established when the genomes of the four former varieties of Aureobasidium pullulans were sequenced and the large differences between them were discovered.

Penicillium olsonii is an anamorph, filamentous species in the genus Penicillium which produces several polygalacturonases, xanthoepocin, asperphenamate, verrucolone, phthalate and olnacin. Penicillium olsonii is an often source of spoilage of tomatoes, salami and beans This species occurs ubiquitously in soil

Penicillium spathulatum is a species of fungus in the genus Penicillium which produces asperphenamate.

Haloterrigena turkmenica is an aerobic chemo organotrophic archeon originally found in Turkish salt lakes.

Halomonas meridiana is a bacterial species discovered in 1990 in the hypersaline lakes of Vestfold Hills, Antarctica.

Wallemia mellicola is a xerophilic fungus of the phylum Basidiomycota, described in 2015 upon taxonomic revision of the species Wallemia sebi. A large amount of published research referring to W. sebi was likely actually performed on W. mellicola. An example of this is the sequencing of the W. mellicola genome, which was published under the name of W. sebi.

Fungal genomes are among the smallest genomes of eukaryotes. The sizes of fungal genomes range from less than 10 Mbp to hundreds of Mbp. The average genome size is approximately 37 Mbp in Ascomycota, 47 Mbp in Basidiomycota and 75 Mbp in Oomycota. The sizes and gene numbers of the smallest genomes of free-living fungi such as those of Wallemia ichthyophaga, Wallemia mellicola or Malassezia restricta are comparable to bacterial genomes. The genome of the extensively researched yeast Saccharomyces cerevisiae contains approximately 12 Mbp and was the first completely sequenced eukaryotic genome. Due to their compact size fungal genomes can be sequenced with less resources than most other eukaryotic genomes and are thus important models for research. Some fungi exist as stable haploid, diploid, or polyploid cells, others change ploidy in response to environmental conditions and aneuploidy is also observed in novel environments or during periods of stress.

References

  1. "Hortaea werneckii". Archived from the original on 2009-08-21. Retrieved 2009-08-10.
  2. Gunde-Cimerman N, Ramos J, Plemenitas A (November 2009). "Halotolerant and halophilic fungi". Mycological Research. 113 (Pt 11): 1231–41. doi:10.1016/j.mycres.2009.09.002. PMID   19747974.
  3. 1 2 3 Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N (December 2007). "Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization". Microbiology. 153 (Pt 12): 4261–73. doi:10.1099/mic.0.2007/010751-0. PMID   18048939.
  4. 1 2 3 Gostinčar C, Lenassi M, Gunde-Cimerman N, Plemenitaš A (2011). "Fungal adaptation to extremely high salt concentrations". Advances in Applied Microbiology. 77: 71–96. doi:10.1016/B978-0-12-387044-5.00003-0. ISBN   9780123870445. PMID   22050822.
  5. Turk M, Plemenitas A (November 2002). "The HOG pathway in the halophilic black yeast Hortaea werneckii: isolation of the HOG1 homolog gene and activation of HwHog1p". FEMS Microbiology Letters. 216 (2): 193–9. doi: 10.1111/j.1574-6968.2002.tb11435.x . PMID   12435502.
  6. Lenassi M, Vaupotic T, Gunde-Cimerman N, Plemenitas A (March 2007). "The MAP kinase HwHog1 from the halophilic black yeast Hortaea werneckii: coping with stresses in solar salterns". Saline Systems. 3: 3. doi:10.1186/1746-1448-3-3. PMC   1828057 . PMID   17349032.
  7. Fettich M, Lenassi M, Veranič P, Gunde-Cimerman N, Plemenitaš A (May 2011). "Identification and characterization of putative osmosensors, HwSho1A and HwSho1B, from the extremely halotolerant black yeast Hortaea werneckii". Fungal Genetics and Biology. 48 (5): 475–84. doi:10.1016/j.fgb.2011.01.011. PMID   21281727.
  8. Turk M, Méjanelle L, Sentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitas A (February 2004). "Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi". Extremophiles. 8 (1): 53–61. doi:10.1007/s00792-003-0360-5. PMID   15064990. S2CID   20139110.
  9. Gostincar C, Turk M, Plemenitas A, Gunde-Cimerman N (March 2009). "The expressions of Delta 9-, Delta 12-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent". FEMS Yeast Research. 9 (2): 247–56. doi: 10.1111/j.1567-1364.2009.00481.x . PMID   19220869.
  10. Reid BJ (July 1998). "Exophiala werneckii causing tinea nigra in Scotland". The British Journal of Dermatology. 139 (1): 157–8. doi:10.1046/j.1365-2133.1998.02340.x. PMID   9764175. S2CID   70450832.
  11. 1 2 Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, Jones S, Birol I, Cimerman NG, Plemenitaš A (2013). "Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii". PLOS ONE. 8 (8): e71328. Bibcode:2013PLoSO...871328L. doi: 10.1371/journal.pone.0071328 . PMC   3744574 . PMID   23977017.
  12. 1 2 Sinha S, Flibotte S, Neira M, Formby S, Plemenitaš A, Cimerman NG, Lenassi M, Gostinčar C, Stajich JE, Nislow C (July 2017). "Hortaea werneckii: Combining an Improved Genome with Gene Expression and Chromatin Structure". G3. 7 (7): 2015–2022. doi:10.1534/g3.117.040691. PMC   5499112 . PMID   28500048.
  13. Dujon B (August 2015). "Basic principles of yeast genomics, a personal recollection". FEMS Yeast Research. 15 (5): fov047. doi: 10.1093/femsyr/fov047 . PMID   26071597.
  14. 1 2 Gostinčar C, Stajich JE, Zupančič J, Zalar P, Gunde-Cimerman N (May 2018). "Genomic evidence for intraspecific hybridization in a clonal and extremely halotolerant yeast". BMC Genomics. 19 (1): 364. doi:10.1186/s12864-018-4751-5. PMC   5952469 . PMID   29764372.